

SDK White Paper

Soft Shadows

TB-01409-001_v01
July 2004

 Abstract

This paper describes how Shader Model 3.0’s conditional branching accelerates the
computation of soft shadows. Note that you are not generating true soft-shadows,
but rather approximating soft shadows by softening the boundaries of traditional
hard shadows. The technique described in this paper performs a small amount of
computation to estimate if the current pixel is in the approximated soft-shadow
region. If the pixel is completely in shadow, or completely out of shadow, the
shader exits early. Otherwise, additional work is performed to produce a more
accurate estimate of the shadow’s intensity at the current pixel. Using conditional
branching to perform this additional work only when needed gains considerable
performance over techniques that don’t use branching.

This sample is written for DirectX 9.0c and requires PS/VS3.0 support.

Yury Uralsky, Anis Ahmad
sdkfeedback@nvidia.com
NVIDIA Corporation
2701 San Tomas Expressway
Santa Clara, CA 95050
July 15, 2004

DA-00849-001_v03 2
07/15/04

Introduction to Shadows

Shadows are an important visual cue. Unfortunately, most real-time techniques for
computing shadows generate hard and, in the case of shadow-maps, aliased
shadows. We can soften the edges of the shadows by employing percentage-closer
filtering. In fact, a sufficiently large percentage-closer filter approximates soft
shadow boundaries well. High quality soft shadows, however, require a large
number of samples.

 In this paper we explain how to improve both the performance and the quality of
shadow computations that use percentage-closer filtering. The technique we
describe achieves higher quality by employing pseudo-random, jittered sampling
over a large filter kernel, and it achieves higher performance by only multi-sampling
pixels near the border of the original hard shadow. Figure 1 shows images
generated by the technique. The provided code lets you experiment with these
techniques to see how they enhance the appearance of shadows.

Figure 1. Real-time Softened Shadows

DA-00849-001_v03 3
07/15/04

 Soft Shadows

DA-00849-001_v03 4
07/15/04

Percentage-Closer
Filtering

Penumbras are formed when part of the light source illuminating a surface is visible,
and part of is obscured. With shadow maps, because you are dealing with point
light sources, this definition is meaningless. However, we can approximate soft
shadows using a technique called percentage-closer filtering [1].

Researchers at Pixar developed percentage-closer filtering to help anti-alias shadow
map boundaries. Beginning with the GeForce3, NVIDIA hardware performs
percentage-closer filtering automatically using hardware accelerated shadow maps.
Percentage-closer filtering works by comparing the current pixel's depth against its
corresponding position in the shadow map, and against its immediate neighbors in
the shadow map. The resulting shadow intensity is the percentage of shadow map
tests determined to be in shadow.

While percentage-closer filtering does help eliminate shadow aliasing, it can not
produce shadows with sufficiently large penumbras. Soft shadows can be produced
by making a simple variation to this technique. Rather than testing only the
immediate neighbors of the pixel, test an arbitrarily large set of samples near the
pixel in question, as illustrated in Figure 2.

Figure 2. Sampling Around a Local Region of the Shadow
Map Produces Approximated Soft Shadows

 Soft Shadows

DA-00849-001_v03 5
07/15/04

Blurring Hard
Shadows

To make shadows appear soft, you need to blur hard shadows. Though it is not
correct from a physics standpoint, results are acceptable. In signal processing terms,
that means convolving shadow function with a box filter kernel. In other words,
calculating the following integral over some local neighborhood of current shadow
map sampling point.

SoftShadow(s) = ∫ shadow(x) ds
 S

The bigger this region is, the softer the shadow. The size of this footprint is
determined both by a user-provided value, which controls overall softness, and by
the distance between the point in question and the light source, which in turn is
determined from the w-component of the projected texture coordinate.

The discrete world deals with sampled representations of continuous functions,
such as shadow maps. Therefore, the integral has to be approximated with a finite
sum having sufficiently large number of terms. Getting higher quality approximation
with regularly spaced sample locations is challenging because number of samples
required can get really high and thus computationally expensive. Even with high
number of samples, aliasing artifacts in the form of banding will still be visible.

To approximate this integral efficiently, we employ a well-known technique called
Monte-Carlo sampling. According to this method, we sample shadow map at a
number of randomly chosen locations within our sampling region, and average
them. Essentially, the Monte-Carlo method hides the approximation error by
replacing it with high-frequency noise. The human visual system is well-trained to
deal with noise, so the error becomes much less objectionable than banding.

 Soft Shadows

DA-00849-001_v03 6
07/15/04

Jittered Sampling
Unfortunately, the naïve approach of averaging random set of shadow map samples
at each screen pixel results in too much noise—which is still distracting to the eyes.
If we look at the sample patterns generated from random numbers with uniform
distribution, we see that sampling density is highly non-uniform across our region
(some areas have too much sample locations concentrated; some other areas are
under sampled). This increases noise variance and makes it much more visible than
it should be.

Jittered sampling, shown in Figure 3, is an excellent way to reduce noise variance.
Computing a jittered sample simply involves taking a sample point from a uniform
grid and randomly offsetting it within its grid cell. This random offset is generally
some fraction of the distance between the uniform grid points. Since we are
generating samples for a disc-shaped filter, we take jittered samples from a
[0,1]x[0,1] grid and map them onto a disc using polar coordinates, taking care to
keep sampling density uniform across entire region.

 Uniform Samples Jittered Samples

Figure 3. Comparison of Uniform and Jittered Samples

It is computationally expensive to compute a new set of randomly jittered samples
at each pixel. Therefore, pre-compute a set of 64 jittered samples per pixel, for a
small MxM region of screen pixels. The pre-computed samples are stored as 2D
offsets in an MxMx32 3D texture, where the red/green channels store one offset
and the blue/alpha channels store another offset.

Use each pixel's screen space coordinate, available through the VPOS register in
PS3.0 (or fragment.position in OpenGL), to fetch this pixel’s set of 64 jittered
samples. By wrapping texture coordinates in x- and y- directions for this 3D texture,
you effectively tile the precomputed samples over the entire screen. As a result, you
get locally unique jittered samples that cost only a single 3D texture lookup to
compute.

 Soft Shadows

DA-00849-001_v03
07/15/04

Adaptive Sampling
It is wasteful to compute many shadow-map tests for pixels that are either
completely in shadow or completely visible to the light source. That wasteful
computation is the motivation for this technique. We test a handful of samples first
and determine whether or not these samples are completely in shadow or
completely unobscured. If the small set of samples does not fall into either category,
we can assume the pixel lies in the approximated soft shadow region and thus test
additional samples to compute an estimate of the shadow's intensity.

In our implementation, the set of samples used to test whether or not the pixel is in
the soft shadow region are distributed along the other rim of our filter. Although
jittered, the positions of these samples are still fixed to small regions with relatively
large gaps separating them. For large filters, these gaps could lead to sampling
artifacts, as in Figure 4. These artifacts are particularly noticeable when the shadow
caster has small features. One way to deal with these artifacts is to randomly rotate
each set of jittered offsets. These rotations minimize the sampling artifacts by
adjusting the location of the gaps between samples, from pixel to pixel.

Fig

An example of where sampling artifacts
might occur when the samples miss
certain features. Red pixels are those
determined to be in a soft shadow by
the small set of initial samples
 7

ure 4. Sampling Artifacts

 Soft Shadows

DA-00849-001_v03 8
07/15/04

Performance notes
Due to finite shadow map precision and disparity in sampling patterns in screen
space versus shadow map space, shadows can exhibit aliasing in the form of shadow
acne across object surfaces. This fragility of the shadow map test is a well-known
problem common to all shadow map-based algorithms. Typically, this issue is
hidden by rendering second-depth surfaces to shadow map, thus effectively moving
the problem to the shadowed side of the object where it is not visible.

Note: The aliasing problem has certain performance implications with the
technique described in this paper. Though not visible when second depth
shadow mapping is used, this issue potentially makes more pixels to be
estimated as being penumbra pixels, which wastes computation on those.

To improve performance of adaptive sampling techniques, take into consideration
whether the current pixel belongs to the back side of the object with respect to the
light source and never over sample those pixels, even if they are [incorrectly]
estimated as being penumbra pixels. This is accomplished by comparing the scalar
product of N and L to zero and taking the result into account when deciding
whether extra shadow samples are needed (see Figure 5).

Figure 5. Penumbra Pixels With and Without Optimization

Another possible improvement is using mid-point shadow maps in concert with this
technique. Mid-point shadow maps can improve the quality of shadows generated
by the described method and eliminate light leakage artifacts visible in some places.

 Soft Shadows

DA-00849-001_v03 9
07/15/04

Conclusion
With the techniques described in this paper, we have shown how to compute
approximated soft shadows efficiently using hardware conditional branching in the
pixel shader. While these techniques are used to produce soft shadows, they can also
be used to accelerate other algorithms where heavy sampling is required, such as
motion blur or depth-of-field effects.

Explore ways to create or accelerate new effects with the techniques described in
this paper.

Bibliography
1. Reevers, W. T., D. H. Salesin, and R. L. Cook. 1987. Rendering Antialiased Shadows

with Depth Maps. Computer Graphics 21(4) (Proceedings of SIGGRAPH 87).

2. Robert L. Cook. Stochastic sampling in computer graphics, ACM Transactions on
Graphics (TOG), v.5 n.1, p.51-72, Jan. 1986.

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”)
ARE BEING PROVIDED “AS IS." NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED,
STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS
ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A
PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation
assumes no responsibility for the consequences of use of such information or for any
infringement of patents or other rights of third parties that may result from its use. No license is
granted by implication or otherwise under any patent or patent rights of NVIDIA Corporation.
Specifications mentioned in this publication are subject to change without notice. This
publication supersedes and replaces all information previously supplied. NVIDIA Corporation
products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation.
Other company and product names may be trademarks of the respective companies with which
they are associated.

Copyright

© 2004 NVIDIA Corporation. All rights reserved

NVIDIA Corporation
2701 San Tomas Expressway

Santa Clara, CA 95050
www.nvidia.com

	Abstract
	Introduction to Shadows
	Percentage-Closer Filtering
	Blurring Hard Shadows
	Jittered Sampling
	Adaptive Sampling
	Performance notes
	Conclusion
	Bibliography
	Trademarks
	Copyright

