

Technical Report

SLI Best Practices

Abstract

This paper describes techniques that can be used to perform application-side detection of
SLI-configured systems, as well as ensure maximum performance scaling under SLI. The
accompanying sample introduces NVCPL and demonstrates different methods of handling
texture render targets and Direct3D queries.

Peter Young
sdkfeedback@nvidia.com

NVIDIA Corporation
2701 San Tomas Expressway
Santa Clara, CA 95050

July 13, 2005

 i

Table of Contents

Introduction to SLI..3
Using NVCPL ..4
Getting Maximum Performance Benefit from SLI ..6
Direct3D Render to Texture ..6
OpenGL Render to Texture..8
Buffering Frames in Direct3D..8
Conclusion ...10

 2

SLI Best Practices

Introduction to SLI

Scalable Link Interface (SLI) is a multi-GPU configuration that offers increased rendering
performance by dividing workload across multiple GPUs. SLI-certified motherboards are
PCI-Express motherboards with multiple x16 lanes. Each lane accepts a PCI-Express GPU,
and GPUs are linked via an external bridge connector. Once SLI rendering has been
enabled in the control panel, the driver will treat both GPUs as one logical device and divide
rendering workload automatically. There are three SLI rendering modes available: Alternate
Frame Rendering (AFR), Split Frame Rendering (SFR), and compatibility mode.

In Alternate Frame Rendering, the driver divides workload by alternating GPUs every frame.
For example, on a system with two SLI-enabled GPUs, frame 0 would be rendered by GPU
0, frame 1 would be rendered by GPU1, frame 2 would be rendered by GPU0, and so on.
This is typically the preferred SLI rendering mode as it divides workload evenly between
GPUs and requires little inter-GPU communication, allowing for up to a 1.9x performance
increase.

In Split Frame Rendering, the driver will clip the scene into multiple regions and designate
rendering workload for these regions to different GPUs. For example, on a system with two
SLI-enabled GPUs, the screen may be divided vertically, with GPU0 rendering the top
region and GPU1 rendering the bottom region. Rendering is also dynamically load balanced,
so the scene division will change whenever the driver determines that one GPU is working
more than another. This SLI rendering mode is typically not as desirable as AFR mode,
since some rendering work is duplicated and communications overhead is higher.

In compatibility mode, only GPU0 is active and all other GPUs are idle. This offers no
performance benefit but ensures compatibility.

In all SLI-rendering modes, local memory is duplicated across all GPUs. This means that on
an SLI system with two 256MB video cards, there is still only 256MB of video memory
available to applications. Additionally, any change to local memory on one GPU (for
example, dynamic texture updates) will often require a data broadcast to other GPUs. This
can introduce a performance penalty depending on the size and characteristics of the data.

The rest of this document will describe how to best prepare your application for running
AFR mode and achieving maximum performance benefit from it.

 3

SLI Best Practices

Using NVCPL

NVCPL is a lightweight library included as part of the end user's driver installation, which
allows applications to query a number of important details regarding the user's system
configuration. Generally speaking, there are at least two tasks you would use NVCPL for
when developing for SLI: Querying the number of SLI-configured GPUs on the system,
and specifying the desired SLI mode for rendering.

To use NVCPL, first detect the presence of NVCPL.dll on the user's system:

HINSTANCE hLib = ::LoadLibrary(L"NVCPL.dll");

 if (hLib == 0)
 {
 printf("Unable to load NVCPL.dll\n");
 bError = true;
 }

As a safeguard, the application should also query the driver ID string to ensure it is an
NVIDIA driver. This protects against situations where, for example, a user changes video
cards without uninstalling their NVIDIA drivers:

D3DADAPTER_IDENTIFIER9 id;

pD3DObject->GetAdapterIdentifier(D3DADAPTER_DEFAULT, 0, &id);
strupr(id.Description);

if ((strstr(id.Description, "NVIDIA") == NULL) ||

(strlen(id.Description) == 0))
{

 printf("NVCPL.dll present but current driver is not an
NVIDIA driver\n");

 4

SLI Best Practices

 bError = true;
}

Once NVCPL.dll has been detected and the current driver has been verified as being an
NVIDIA driver, you may use NVCPL to query the number of SLI-enabled GPUs present:

NvCplGetDataIntType NvCplGetDataInt =
(NvCplGetDataIntType)::GetProcAddress(hLib, "NvCplGetDataInt");
NvCplSetDataIntType NvCplSetDataInt =
(NvCplSetDataIntType)::GetProcAddress(hLib, "NvCplSetDataInt");

if ((NvCplGetDataInt == NULL) || (NvCplSetDataInt == NULL))
{

 printf("Unable to get a pointer to
NvCplGetDataInt()/NvCplSetDataInt()\n");

 bError = true;
}

if (NvCplGetDataInt(NVCPL_API_NUMBER_OF_SLI_GPUS,

(long *)&gNumGPUs) == FALSE)
{

 printf("NvCplGetDataInt() failed on number of SLI-enabled
GPUs, assuming single GPU\n");

 bError = true;
}

Next, you typically would like to specify the desired SLI rendering mode for your
application. By default, the driver will attempt to automatically determine the ideal mode for
you. It will first attempt to run AFR mode, since AFR usually yields optimal performance
scaling. If that fails, it will then attempt SFR mode. If both modes fail, it will drop down to
single GPU rendering, which is guaranteed to be compatible with all applications.

Under most circumstances, the application developer will be better equipped to make this
decision than the driver is. You can use NVCPL to override the driver's decision when you
know that a particular rendering mode is best suited for your application. This prevents
situations where, for example, AFR is safe to run on your application but the driver
conservatively selects SFR in an attempt to guarantee compatibility (perhaps due to
ambiguities in the selection criteria). The following code demonstrates how to force SLI
rendering mode:

NvCplSetDataInt(NVCPL_API_SLI_MULTI_GPU_RENDERING_MODE,

0x00000001);

And that's it! You are now ready to take advantage of the performance benefits of SLI.

 5

SLI Best Practices

Getting Maximum Performance
Benefit from SLI

SLI performance is inversely proportional to how much data is shared between GPUs. In
the optimal case, no data is shared between GPUs, which eliminates synchronization
overhead and allows for maximum parallelism. In most cases (especially in AFR mode) this
can be achieved without any extra work. However, there are some cases where applications
can unintentionally introduce SLI bottlenecks. The rest of this document will detail these
situations and cover various solutions.

Direct3D Render to Texture

Render to texture (RTT) in Direct3D is an extremely useful technique that offers a number
of advantages; for example, RTT allows the application to employ high dynamic range
rendering by rendering to floating point surfaces (formats that are normally unavailable to
standard swap chain surfaces). However, there is one significant difference between swap
chain surfaces and textures declared as render targets (RTs): The former can be declared as
a discardable surface (through the flag D3DSWAPEFFECT_DISCARD), while the latter
has no equivalent creation flag. Without this discard hint, the driver must assume that the
data integrity of texture RTs must be preserved across frames. Because each GPU in an SLI
configuration maintains its own copy of all local resources, any change to a texture RT needs
to be broadcasted to all other GPUs on the system. This typically results in a large data
copy, resulting in bus traffic and synchronization overhead.

 6

SLI Best Practices

The best way to avoid this performance penalty is to clear color for texture RTs each frame
by calling Clear() on the surface that corresponds to the texture. By clearing RTs in this
fashion, the driver can assume that data need not be preserved and forego the need to
broadcast changes to other GPUs.

One notable exception to this rule is when applications require the results of the previous
frame's rendering for the current frame. One common example of this is when the previous
frame's rendering is used to approximate scene luminance for tone mapping. In this
situation, clearing RTs is obviously not an option. One alternative technique is to allocate a
separate RT for each GPU on the system, and only perform render to texture operations on
the surface that corresponds to the active GPU for the current frame. For example, if your
application uses one texture RT and happens to be running on an SLI system with two
GPUs, allocate two RTs instead; on even frames, perform all RTT operations on
renderTarget0, and on odd frames perform all RTT operations on renderTarget1. Since no
GPU will ever need to access RT data being used by another GPU, there is no data
dependency between frames and hence no data copy is necessary. This technique also has
the advantage of being slightly faster than the Clear() method, as no clear operation is
necessary. However, this comes at the cost of higher memory consumption due to the need
for additional RTs.

In essence, the basic strategy is the same as it ever was: Only Clear() surface color when
necessary. The only difference is that on SLI systems, you can essentially use Clear() to
indirectly mark RTs as discardable and gain performance.

To summarize:

1. If an SLI-configured system is detected, Clear() RT color each frame.

2. If SLI is detected and Clear() is not an option (RT data must be preserved across
frames), or if additional performance is desired and the higher memory
requirements are not prohibitive, allocate separate RTs for each GPU and cycle
through them round-robin style.

3. If SLI is not detected, only clear RT color when necessary.

4. In all rendering modes, only clear framebuffer color when necessary.

5. In all rendering modes, always clear framebuffer Z/depth.

 7

SLI Best Practices

OpenGL Render to Texture

Strategies for OpenGL render to texture performance in SLI generally follow the same
principles as those of Direct3D; your goal should be to minimize data broadcasts and inter-
frame dependencies wherever possible. That said, here is a list of OpenGL-specific tips:

• Use frame buffer objects (FBO) instead of pbuffers wherever possible. FBOs are
faster and more flexible than pbuffers in almost all cases, and with pbuffers there is
no way to prevent pbuffer data broadcasts across GPUs in an SLI system.

• Avoid using surface-modifying functions such as glTexImage(), glCopyTexImage(),
etc.

• When creating your OpenGL context, request a pixel format with the
PFD_SWAP_EXCHANGE flag set. This will allow the driver to forego
broadcasting the contents of the backbuffer to all GPUs.

Buffering Frames in Direct3D

By default, Direct3D buffers up to three frames' worth of render data. Historically, this was
done to grant a performance benefit on single GPU systems. However, because only one
frame can be physically displayed at a time, multichip configurations such as SLI by
definition require this buffering of frames to achieve any parallelism in an alternate frame
rendering environment.

 8

SLI Best Practices

The drawback to this is that it introduces a latency between issuing a command and seeing
its results onscreen (often referred to as “input lag”). The overall goal is to achieve the
greatest performance benefit while minimizing perceived input lag.

One of the worst ways to eliminate input lag is to force a flush at the end of every frame.
Doing so stalls the CPU, flushes all buffers, then stalls the GPU. In this situation you are
not only eliminating any performance benefit from SLI, but you are also incurring a
performance penalty on single GPU systems since you are reducing parallelism between the
CPU and GPU. This technique should be avoided wherever possible.

A less objectionable solution is to use event queries to control the number of buffered
frames. This allows the application to explicitly specify how many frames are buffered.
Ideally, you want to buffer at least one frame per GPU on the system. This technique offers
a good compromise of minimizing input lag, while also achieving better performance on
both SLI-enabled systems and single-GPU systems.

One additional detail worth noting is that while frame throughput is the same on SLI
systems as it is on non-SLI systems, frame latency is reduced due to parallelism. For
example, if a typical frame takes 30ms to render, the effective latency of those frames is only
~15ms (assuming an SLI system with two GPUs). Thus, increasing the number of frames
buffered in SLI does not linearly increase input lag as one might expect. Actual results will
depend on how well your application is scaling in SLI.

 9

SLI Best Practices

Conclusion

For more information on SLI performance programming, see the SLI chapter in the
NVIDIA GPU Programming Guide, available for download at:

http://developer.nvidia.com/object/gpu_programming_guide.html

 10

http://developer.nvidia.com/object/gpu_programming_guide.html

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”)
ARE BEING PROVIDED “AS IS." NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED,
STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS
ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A
PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation
assumes no responsibility for the consequences of use of such information or for any
infringement of patents or other rights of third parties that may result from its use. No license is
granted by implication or otherwise under any patent or patent rights of NVIDIA Corporation.
Specifications mentioned in this publication are subject to change without notice. This
publication supersedes and replaces all information previously supplied. NVIDIA Corporation
products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation.
Other company and product names may be trademarks of the respective companies with which
they are associated.

Copyright

© 205 by NVIDIA Corporation. All rights reserved

NVIDIA Corporation
2701 San Tomas Expressway

Santa Clara, CA 95050
www.nvidia.com

	 Introduction to SLI
	Using NVCPL
	Getting Maximum Performance Benefit from SLI
	Direct3D Render to Texture
	OpenGL Render to Texture
	Buffering Frames in Direct3D
	Conclusion

