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Abstract 

This paper describes techniques that can be used to perform application-side detection of 
SLI-configured systems, as well as ensure maximum performance scaling under SLI.  The 
accompanying sample introduces NVCPL and demonstrates different methods of handling 
texture render targets and Direct3D queries. 
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Introduction to SLI 

Scalable Link Interface (SLI) is a multi-GPU configuration that offers increased rendering 
performance by dividing workload across multiple GPUs.  SLI-certified motherboards are 
PCI-Express motherboards with multiple x16 lanes.  Each lane accepts a PCI-Express GPU, 
and GPUs are linked via an external bridge connector.  Once SLI rendering has been 
enabled in the control panel, the driver will treat both GPUs as one logical device and divide 
rendering workload automatically.  There are three SLI rendering modes available:  Alternate 
Frame Rendering (AFR), Split Frame Rendering (SFR), and compatibility mode. 

In Alternate Frame Rendering, the driver divides workload by alternating GPUs every frame.  
For example, on a system with two SLI-enabled GPUs, frame 0 would be rendered by GPU 
0, frame 1 would be rendered by GPU1, frame 2 would be rendered by GPU0, and so on.  
This is typically the preferred SLI rendering mode as it divides workload evenly between 
GPUs and requires little inter-GPU communication, allowing for up to a 1.9x performance 
increase. 

In Split Frame Rendering, the driver will clip the scene into multiple regions and designate 
rendering workload for these regions to different GPUs.  For example, on a system with two 
SLI-enabled GPUs, the screen may be divided vertically, with GPU0 rendering the top 
region and GPU1 rendering the bottom region.  Rendering is also dynamically load balanced, 
so the scene division will change whenever the driver determines that one GPU is working 
more than another.  This SLI rendering mode is typically not as desirable as AFR mode, 
since some rendering work is duplicated and communications overhead is higher. 

In compatibility mode, only GPU0 is active and all other GPUs are idle.  This offers no 
performance benefit but ensures compatibility. 

In all SLI-rendering modes, local memory is duplicated across all GPUs.  This means that on 
an SLI system with two 256MB video cards, there is still only 256MB of video memory 
available to applications.  Additionally, any change to local memory on one GPU (for 
example, dynamic texture updates) will often require a data broadcast to other GPUs.  This 
can introduce a performance penalty depending on the size and characteristics of the data. 

The rest of this document will describe how to best prepare your application for running 
AFR mode and achieving maximum performance benefit from it. 
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Using NVCPL 

 

NVCPL is a lightweight library included as part of the end user's driver installation, which 
allows applications to query a number of important details regarding the user's system 
configuration.  Generally speaking, there are at least two tasks you would use NVCPL for 
when developing for SLI:  Querying the number of SLI-configured GPUs on the system, 
and specifying the desired SLI mode for rendering. 

 

To use NVCPL, first detect the presence of NVCPL.dll on the user's system: 

 
HINSTANCE hLib = ::LoadLibrary(L"NVCPL.dll"); 

 if (hLib == 0) 
 { 
  printf("Unable to load NVCPL.dll\n"); 
  bError = true; 
 } 

 

As a safeguard, the application should also query the driver ID string to ensure it is an 
NVIDIA driver.  This protects against situations where, for example, a user changes video 
cards without uninstalling their NVIDIA drivers: 

 
D3DADAPTER_IDENTIFIER9 id; 

 
pD3DObject->GetAdapterIdentifier(D3DADAPTER_DEFAULT, 0, &id); 
strupr(id.Description); 

 
if ((strstr(id.Description, "NVIDIA") == NULL) ||  

(strlen(id.Description) == 0)) 
{ 

  printf("NVCPL.dll present but current driver is not an  
NVIDIA driver\n"); 
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  bError = true; 
} 

 

Once NVCPL.dll has been detected and the current driver has been verified as being an 
NVIDIA driver, you may use NVCPL to query the number of SLI-enabled GPUs present: 

 
NvCplGetDataIntType NvCplGetDataInt = 
(NvCplGetDataIntType)::GetProcAddress(hLib, "NvCplGetDataInt"); 
NvCplSetDataIntType NvCplSetDataInt = 
(NvCplSetDataIntType)::GetProcAddress(hLib, "NvCplSetDataInt"); 

 
if ((NvCplGetDataInt == NULL) || (NvCplSetDataInt == NULL)) 
{ 

  printf("Unable to get a pointer to  
NvCplGetDataInt()/NvCplSetDataInt()\n"); 

  bError = true; 
} 

 
if (NvCplGetDataInt(NVCPL_API_NUMBER_OF_SLI_GPUS,  

(long *)&gNumGPUs) == FALSE) 
{ 

  printf("NvCplGetDataInt() failed on number of SLI-enabled  
GPUs, assuming single GPU\n"); 

  bError = true; 
} 

 

Next, you typically would like to specify the desired SLI rendering mode for your 
application.  By default, the driver will attempt to automatically determine the ideal mode for 
you.  It will first attempt to run AFR mode, since AFR usually yields optimal performance 
scaling.  If that fails, it will then attempt SFR mode.  If both modes fail, it will drop down to 
single GPU rendering, which is guaranteed to be compatible with all applications. 

Under most circumstances, the application developer will be better equipped to make this 
decision than the driver is.  You can use NVCPL to override the driver's decision when you 
know that a particular rendering mode is best suited for your application.  This prevents 
situations where, for example, AFR is safe to run on your application but the driver 
conservatively selects SFR in an attempt to guarantee compatibility (perhaps due to  
ambiguities in the selection criteria).  The following code demonstrates how to force SLI 
rendering mode: 

 
NvCplSetDataInt(NVCPL_API_SLI_MULTI_GPU_RENDERING_MODE,  

0x00000001); 

 

And that's it!  You are now ready to take advantage of the performance benefits of SLI.  
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Getting Maximum Performance  
Benefit from SLI 

SLI performance is inversely proportional to how much data is shared between GPUs.  In 
the optimal case, no data is shared between GPUs, which eliminates synchronization 
overhead and allows for maximum parallelism.  In most cases (especially in AFR mode) this 
can be achieved without any extra work.  However, there are some cases where applications 
can unintentionally introduce SLI bottlenecks.  The rest of this document will detail these 
situations and cover various solutions. 

 

Direct3D Render to Texture 

Render to texture (RTT) in Direct3D is an extremely useful technique that offers a number 
of advantages; for example, RTT allows the application to employ high dynamic range 
rendering by rendering to floating point surfaces (formats that are normally unavailable to 
standard swap chain surfaces).  However, there is one significant difference between swap 
chain surfaces and textures declared as render targets (RTs):  The former can be declared as 
a discardable surface (through the flag D3DSWAPEFFECT_DISCARD), while the latter 
has no equivalent creation flag.  Without this discard hint, the driver must assume that the 
data integrity of texture RTs must be preserved across frames.  Because each GPU in an SLI 
configuration maintains its own copy of all local resources, any change to a texture RT needs 
to be broadcasted to all other GPUs on the system.  This typically results in a large data 
copy, resulting in bus traffic and synchronization overhead. 
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The best way to avoid this performance penalty is to clear color for texture RTs each frame 
by calling Clear() on the surface that corresponds to the texture.  By clearing RTs in this 
fashion, the driver can assume that data need not be preserved and forego the need to 
broadcast changes to other GPUs. 

One notable exception to this rule is when applications require the results of the previous 
frame's rendering for the current frame.  One common example of this is when the previous 
frame's rendering is used to approximate scene luminance for tone mapping.  In this 
situation, clearing RTs is obviously not an option.  One alternative technique is to allocate a 
separate RT for each GPU on the system, and only perform render to texture operations on 
the surface that corresponds to the active GPU for the current frame.  For example, if your 
application uses one texture RT and happens to be running on an SLI system with two 
GPUs, allocate two RTs instead; on even frames, perform all RTT operations on 
renderTarget0, and on odd frames perform all RTT operations on renderTarget1.  Since no 
GPU will ever need to access RT data being used by another GPU, there is no data 
dependency between frames and hence no data copy is necessary.  This technique also has 
the advantage of being slightly faster than the Clear() method, as no clear operation is 
necessary.  However, this comes at the cost of higher memory consumption due to the need 
for additional RTs. 

In essence, the basic strategy is the same as it ever was:  Only Clear() surface color when 
necessary.  The only difference is that on SLI systems, you can essentially use Clear() to 
indirectly mark RTs as discardable and gain performance. 

 

To summarize: 

 

1. If an SLI-configured system is detected, Clear() RT color each frame. 

2. If SLI is detected and Clear() is not an option (RT data must be preserved across 
frames), or if additional performance is desired and the higher memory 
requirements are not prohibitive, allocate separate RTs for each GPU and cycle 
through them round-robin style. 

3. If SLI is not detected, only clear RT color when necessary. 

4. In all rendering modes, only clear framebuffer color when necessary. 

5. In all rendering modes, always clear framebuffer Z/depth. 
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OpenGL Render to Texture 

Strategies for OpenGL render to texture performance in SLI generally follow the same 
principles as those of Direct3D; your goal should be to minimize data broadcasts and inter-
frame dependencies wherever possible.  That said, here is a list of OpenGL-specific tips: 

 

• Use frame buffer objects (FBO) instead of pbuffers wherever possible.  FBOs are 
faster and more flexible than pbuffers in almost all cases, and with pbuffers there is 
no way to prevent pbuffer data broadcasts across GPUs in an SLI system. 

• Avoid using surface-modifying functions such as glTexImage(), glCopyTexImage(), 
etc. 

• When creating your OpenGL context, request a pixel format with the 
PFD_SWAP_EXCHANGE flag set.  This will allow the driver to forego 
broadcasting the contents of the backbuffer to all GPUs. 

 

Buffering Frames in Direct3D 

By default, Direct3D buffers up to three frames' worth of render data.  Historically, this was 
done to grant a performance benefit on single GPU systems.  However, because only one 
frame can be physically displayed at a time, multichip configurations such as SLI by 
definition require this buffering of frames to achieve any parallelism in an alternate frame 
rendering environment. 
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The drawback to this is that it introduces a latency between issuing a command and seeing 
its results onscreen (often referred to as “input lag”).  The overall goal is to achieve the 
greatest performance benefit while minimizing perceived input lag. 

One of the worst ways to eliminate input lag is to force a flush at the end of every frame.  
Doing so stalls the CPU, flushes all buffers, then stalls the GPU.  In this situation you are 
not only eliminating any performance benefit from SLI, but you are also incurring a 
performance penalty on single GPU systems since you are reducing parallelism between the 
CPU and GPU.  This technique should be avoided wherever possible. 

A less objectionable solution is to use event queries to control the number of buffered 
frames.  This allows the application to explicitly specify how many frames are buffered.  
Ideally, you want to buffer at least one frame per GPU on the system.  This technique offers 
a good compromise of minimizing input lag, while also achieving better performance on 
both SLI-enabled systems and single-GPU systems. 

One additional detail worth noting is that while frame throughput is the same on SLI 
systems as it is on non-SLI systems, frame latency is reduced due to parallelism.  For 
example, if a typical frame takes 30ms to render, the effective latency of those frames is only 
~15ms (assuming an SLI system with two GPUs).  Thus, increasing the number of frames 
buffered in SLI does not linearly increase input lag as one might expect.  Actual results will 
depend on how well your application is scaling in SLI. 
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Conclusion 

For more information on SLI performance programming, see the SLI chapter in the 
NVIDIA GPU Programming Guide, available for download at: 

 

http://developer.nvidia.com/object/gpu_programming_guide.html
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