

Technical Report

GLSL Pseudo-Instancing

 i
 10/18/2004

Abstract

GLSL Pseudo-Instancing
This whitepaper and corresponding SDK sample demonstrate a technique to speed up the
rendering of instanced geometry with GLSL. The technique relies upon the efficient in-lining
of persistent vertex attributes in OpenGL. World transforms (and potentially other instance
specific data) are passed down for each instance using texture coordinates instead of uniform
variables.

Jeremy Zelsnack
sdkfeedback@nvidia.com

NVIDIA Corporation
2701 San Tomas Expressway
Santa Clara, CA 95050

November 17, 2004

 2
 10/18/2004

Table of Contents

GLSL Pseudo-Instancing...i
Introduction ..3
Technique ..4
GeForce 6800 GT ...6
GeForce FX 5900 Ultra...9
GeForce FX 5200 Ultra...12
Conclusion ...15
Bibliography ..16

GLSL Pseudo-Instancing

 3
 10/18/2004

Introduction

Rendering large numbers of geometrically instanced data can be useful for world clutter such
as rocks, bushes, trees, crates, and debris. In some genres of games, it can also be useful for
weapons and armor.

Unfortunately, rendering large number of instances results in a large amount of driver work.
This is particularly true in GLSL where the driver must map abstract uniform variables into
real physical hardware registers. From the hardware’s perspective, the large number of
constant updates is not ideal either. Constant updates can incur hardware flushes in the
vertex processing engines.

OpenGL has a notion of persistent vertex attributes that can be passed down by immediate
mode calls like glTexCoord(). These API calls are very efficient on the driver side; they don’t
require validation or potentially complex remapping. They are also very efficient on the
hardware side; they do not result in hardware flushes in the vertex processing engines.

The efficiency of persistent vertex attributes can be exploited by passing per-instance data
such as transforms, color and other data via OpenGL immediate mode calls. The benefit of
this technique can be quite large (especially when rendering instances with a small number of
vertices on slow CPUs).

GLSL Pseudo-Instancing

 4
 10/18/2004

Technique

 If you were rendering a large number of instances using GLSL, you could use the
modelview matrix stack and use gl_ModelViewProjectionMatrix in your vertex shader. The
performance of this might not be that great because of the additional CPU load involved in
computing the transform matrices and downloading them to the GPU (most games are CPU
bound, so it’s usually a good idea to offload the CPU when reasonable).

An alternate approach would be to send down a view matrix once for all of the instances. A
world matrix can be sent down for each instance using glUniform4fvARB(),
glUniformMatrix4fvARB() or similar calls. This technique requires more computation
because each vertex has to be transformed by three matrices (assuming view-space lighting)
instead of just one. However, this offloads additional transformation computations from the
over-burdened CPU to the GPU. This is one of the techniques employed in the sample.

The pseudo-instancing approach takes a similar, but slightly different approach. Like the
above technique, a view transform is passed down for all of the instances. Unlike the above
technique, the per-instance world matrices are passed down using glMultiTexCoord() instead
of calls like glUniform4fvARB(). This exploits the software and hardware advantages of the
persistent vertex attributes. The code sample below demonstrates the technique. For more
detailed information, please see the glsl_pseudo_instancing SDK sample.

GLSL Pseudo-Instancing

 5
 10/18/2004

 // Render the instances of the mesh
 for(i=0; i<instances.size(); i++)
 {
 // Send down the matrix and other parameters
 if(gUseInstancing)
 {
 // pseudo-instancing passes per-instance data down
 // as texture coordinates
 glMultiTexCoord4fv(GL_TEXTURE1, instances[i].mWorld[0]);
 glMultiTexCoord4fv(GL_TEXTURE2, instances[i].mWorld[1]);
 glMultiTexCoord4fv(GL_TEXTURE3, instances[i].mWorld[2]);
 }
 else
 {
 // Traditional GLSL uniform variable downloading
 glUniform4fvARB(WorldMatrixLocation, 3,
 (float*)(instances[i].mWorld));
 }

 // Set the color for the instance
 glColor4fv(gInstances[i].mColor);

 // Render the instance
 mesh->render();
 }

The pseudo-instancing technique is similar to the instancing technique in Direct3D
(supported on Shader Model 3.0 GPUs). The major difference is that the Direct3D
instancing API reduces the number of DrawIndexedPrimitive() calls from many to one. This
DrawIndexedPrimitive() call reduction has a large performance benefit in Direct3D. In
OpenGL, the application still calls glDrawElements() (or the like) for every instance. This
isn’t too much of a performance hit because glDrawElements() is very efficient in OpenGL.

Pseudo-instancing applies well to geometry with a small number of per-instance attributes.
The technique does not scale well to complex mesh rendering techniques like skinning; there
are not enough vertex attributes to store all of the bone transforms for each instance. The
technique is not meant as a replacement for traditional particle system rendering or to
replace static meshes where geometry can be reasonably baked into world space.

GLSL Pseudo-Instancing

 6
 10/18/2004

GeForce 6800 GT

The following performance data was collected on a GeForce 6800 GT with 256MB on a
PCI-Express 3.4 GHz Hyper-Threaded P4 system using ForceWare driver 66.81. This
demonstrates the pseudo-instancing performance on a fast CPU with a fast GPU.

The ratio of instances per second using pseudo-instancing over instances per second without
pseudo-instancing is shown below. On this particular setup, the performance difference is
significant for small meshes.

0

0.5

1

1.5

2

2.5

3

3.5

2 12 16 18 24 32 50 72 98 210 682

Vertices Per Instance

Pe
rf

or
m

an
ce

 R
at

io

1024 Instances / Frame 16384 Instances / Frame 65536 Instances / Frame

GLSL Pseudo-Instancing

 7
 10/18/2004

The GeForce 6800 GT can hit over 3 million instances per second for tiny meshes.

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

2 12 16 18 24 32 50 72 98 210 682

Vertices Per Instance

In
st

an
ce

s
/ S

ec
on

d

1024 instances / frame (pseudo-instancing) 16384 instances / frame (pseudo-instancing)
65536 instances / frame (pseudo-instancing)

GLSL Pseudo-Instancing

 8
 10/18/2004

Pseudo-instancing allows the GeForce 6800 GT to render more triangles per second until
the mesh size approaches 1,000 vertices.

0

20

40

60

80

100

120

2 12 16 18 24 32 50 72 98 210 682

Vertices Per Instance

M
Tr

ia
ng

le
s

/ S
ec

on
d

1024 instances / frame (pseudo-instancing) 16384 instances / frame (pseudo-instancing)
65536 instances / frame (pseudo-instancing) 1024 instances / frame
16384 instances / frame 65536 instances / frame

GLSL Pseudo-Instancing

 9
 10/18/2004

GeForce FX 5900 Ultra

The following performance data was collected on a GeForce FX 5900 Ultra with 256MB on
an AGP 8x Athlon XP 2500 system using ForceWare driver 66.81. The configuration
represents a moderately fast CPU with a moderately fast GPU

The ratio of instances per second using pseudo-instancing over instances per second without
pseudo-instancing is shown below. On this setup, the performance difference is quite
dramatic. On tiny instance meshes, the pseudo-instancing performance advantage
approaches 35x! For more realistically sized meshes, the performance improvement is still
impressive.

0

5

10

15

20

25

30

35

40

2 12 16 18 24 32 50 72 98 210 682

Vertices Per Instance

Pe
rf

or
m

an
ce

 R
at

io

1024 Instances / Frame 16384 Instances / Frame 65536 Instances / Frame

GLSL Pseudo-Instancing

 10
 10/18/2004

The GeForceFX 5900 Ultra can hit over 5 million instances per second when using tiny
instance meshes. This is on a system without an incredibly fast CPU.

0

1000000

2000000

3000000

4000000

5000000

6000000

2 12 16 18 24 32 50 72 98 210 682

Vertices Per Instance

In
st

an
ce

s
/ S

ec
on

d

1024 instances / frame (pseudo-instancing) 16384 instances / frame (pseudo-instancing)
65536 instances / frame (pseudo-instancing)

GLSL Pseudo-Instancing

 11
 10/18/2004

The graph below shows a dramatic difference in the triangle rendering rates between using
pseudo-instancing and the traditional rendering method. The downturn in performance for
pseudo-instanced meshes with more than 50 vertices is probably due to less than perfect
vertex cache friendliness in the generated meshes.

0

10

20

30

40

50

60

70

2 12 16 18 24 32 50 72 98 210 682

Vertices Per Instance

M
Tr

ia
ng

le
s

/ S
ec

on
d

1024 instances / frame (pseudo-instancing) 16384 instances / frame (pseudo-instancing)
65536 instances / frame (pseudo-instancing) 1024 instances / frame
16384 instances / frame 65536 instances / frame

GLSL Pseudo-Instancing

 12
 10/18/2004

GeForce FX 5200 Ultra

The following performance data was collected on a GeForce FX 5200 Ultra with 128MB on
an AGP 8x Athlon XP 2500 system using ForceWare driver 66.81.

The ratio of instances per second using pseudo-instancing over instances per second without
pseudo-instancing is shown below. On this particular setup, the performance difference is
substantial for the smaller instance meshes.

0

2

4

6

8

10

12

2 12 16 18 24 32 50 72 98 210 682

Vertices Per Instance

Pe
rf

or
m

an
ce

 R
at

io

1024 Instances / Frame 16384 Instances / Frame 65536 Instances / Frame

GLSL Pseudo-Instancing

 13
 10/18/2004

The GeForce FX 5200 Ultra can hit over 1.5 million instances per second on tiny instance
meshes.

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2 12 16 18 24 32 50 72 98 210 682

Vertices Per Instance

In
st

an
ce

s
/ S

ec
on

d

1024 instances / frame (pseudo-instancing) 16384 instances / frame (pseudo-instancing)
65536 instances / frame (pseudo-instancing)

GLSL Pseudo-Instancing

 14
 10/18/2004

The GeForce FX 5200 enjoys increased triangle rendering rates using pseudo-instancing.
The downturn in performance for meshes with more than 50 vertices is probably due to less
than perfect vertex cache friendliness in the generated meshes

0

2

4

6

8

10

12

14

16

2 12 16 18 24 32 50 72 98 210 682

Vertices Per Instance

M
Tr

ia
ng

le
s

/ S
ec

on
d

1024 instances / frame (pseudo-instancing) 16384 instances / frame (pseudo-instancing)
65536 instances / frame (pseudo-instancing) 1024 instances / frame
16384 instances / frame 65536 instances / frame

GLSL Pseudo-Instancing

 15
 10/18/2004

Conclusion

The pseudo-instancing technique is a simple way to increase performance of rendering large
numbers of instanced geometry. The performance advantage is particularly large when the
instanced geometry has a smaller number of vertices and on slower CPUs. The technique
works on all NVIDIA GPUs that support GLSL vertex shaders (hardware acceleration in
GeForce 3 and beyond); there is no requirement for Shader Model 3.0 capable hardware for
the technique.

GLSL Pseudo-Instancing

 16
 10/18/2004

Bibliography

1. Discussion with Mark Kilgard in the hallway.

NVIDIA Corporation
2701 San Tomas Expressway

Santa Clara, CA 95050
www.nvidia.com

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”)
ARE BEING PROVIDED “AS IS." NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED,
STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS
ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A
PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation
assumes no responsibility for the consequences of use of such information or for any
infringement of patents or other rights of third parties that may result from its use. No license is
granted by implication or otherwise under any patent or patent rights of NVIDIA Corporation.
Specifications mentioned in this publication are subject to change without notice. This
publication supersedes and replaces all information previously supplied. NVIDIA Corporation
products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation.
Other company and product names may be trademarks of the respective companies with which
they are associated.

Copyright

© 2004 by NVIDIA Corporation. All rights reserved

