

Technical Brief

Shadowing Strategies for HLSL
and FX Composer

Table of Contents

Shadowing Strategies...1
Overview ...1
Shadow Transforms ..2
Using Shadow Maps ..3

Special “Roll Your Own” Maps..8
Using Shadow Stencil Volumes...9

Soft Stencil Shadows...12

Shadowing Strategies for HLSL and FX Composer
Kevin Bjorke
kbjorke@nvidia.com

05/16/05 i

mailto:kbjorke@nvidia.com

TB-01868-001_v01 1
05/16/05

Shadowing Strategies

Shadows are important for convincing 3D scenes. Modeling, texturing and surface
shading can describe objects, lighting can reveal their broad form, but it is shadows
that present to a viewer’s eye the spatial relationships between the objects in a scene, or
the time of day, and the hard or soft qualities of the light. The density, angles, and
color of shadows can define time of day, can hide a friend or an enemy, and have a
tremendous impact on the mood and feeling of any picture, movie, or game scene.

Modern GPUs are capable of creating and using shadows by a variety of different
techniques. While hardly exhaustive, this technical brief will help the developer in
understanding and creating the most common forms of shadows used in games and
related realtime applications.

Overview
There are many shadow algorithms, and new ones appear in Siggraph sketches, GDC
papers, and other academic and industry venues every year. In practice, we can
distinguish between two general classes of shadowing methods and shadows: direct
shadows, which are cast from a specific small light source, and indirect shadows,
which are created by obscuration of light coming from all directions throughout the
scene.

Shadows are often classified as “hard” or “soft” – it’s true that indirect shadows will
always be soft, while hard shadows must by definition be from a direct source. But
the variations in softness are broad. It’s wise not to get too caught-up in these labels,
since all shadowing algorithms describe approximations to real-world physics. In the
real world, shadows don’t exist per se – they appear from the lack of incoming light.
But computer graphics rarely tries to exactly emulate the full range of real-world
physics! Instead, as with most computer graphics, we want algorithms that will
provide us with useful and fast results for a “99% correct” solution.

This brief focuses primary on direct shadowing algorithms. The two dominant forms
of direct shadowing used in computer graphics for GPU rendering are shadow maps
and shadow volume stenciling.

Indirect shadowing, at least in terms of pixel and vertex shaders, is often pre-
calculated and involves interpolation of values between vertices – the shader load is
small but the CPU load large. Some soft shadow algorithms involving complex use of
direct shadows will be mentioned here, but indirect shadowing is beyond the scope
of this document.

Shadow Mapping Overview
The general principle of shadow mapping is simple: render a view of the shadowing
object from the point of view of the light source, record the depth at each pixel, and
then use that depth when rendering the final image – for each visible point on the

 Shadowing Strategies for HLSL and FX Composer

rendered surface, compare its distance to the light source with the distance calculated
from the (projected) map of depths. If the stored depth is less than the calculated
distance, then that point is in shadow.

Shadow Volume Stenciling Overview
Stencil shadowing uses a special version of the geometry of the shadowing object, a
shadow volume. The shadow volume is created by comparing object polygons to the
direction of light. Polygons facing the light are unchanged, but polygons facing away
from the light are extruded far away (often to infinity). This creates a polygonal
volume that corresponds to the shadowed area. The volume is rendered multiple
times, always from the normal scene-camera point of view: first to create a valid
scene Z buffer, then with frame-buffer stenciling enabled, rendering surfaces that
face away from the camera (incrementing the stencil buffer) and then surfaces facing
the camera (decrementing). Finally, the scene is rendered with a normal surface
shader, with stencil testing set so that pixels that were inside the shadow volume
(whose stencil counts will be nonzero) will simply not render at all – only pixels
outside the shadow will be rendered.

Below are views showing a simple geometric object, an extruded shadow volume (not
normally ever displayed, shown here with colors for shape definition only) and the
object with shadow applied.

Three views of stencil shadowing:

simple, stencil volume, and stencil-shadow composite

Shadow Transforms
Regardless of the method you choose for direct shadowing, you will need to
determine the incident direction – that is, the vector leading from the shadow source
to your shadowed and shadowing objects. FX Composer provides HLSL-standard
semantics and annotations for querying the location, orientation, and projection cone
of light sources. Here are some typical calls to declare variables that will contain
those values:

float4x4 LampViewXf : View <string frustum="light0";>;
float4x4 LampProjXf : Projection <string frustum="light0";>;
static float4x4 LampViewProjXf = mul(LampViewXf,LampProjXf);

As you can see, the semantics View and Projection, normally used to query the
scene camera, are modified by the frustum annotation so that they can be applied to
a light source. The light source specified in the example is “light0” but any “light#”
designation can be used – further, at runtime the FX Composer user can re-attach

05/16/05 2

 Shadowing Strategies for HLSL and FX Composer

these transforms to any other lightsource the user likes, using the FX Composer
properties-panel controls.

The View matrix will express a transform from the model object coordinates into the
coordinate system of the shadow source, while the Projection matrix will provide
mapping to include the angle of the lamp’s spotlight cone. The third, static variable
declaration concatenates the previous two declarations for a more-complete one-
piece matrix.

If your shader includes the header file “shadowMap.fxh” (included with FX
Composer), this declaration format is implemented as the macro
DECLARE_SHADOW_XFORMS(). See the “shadowMap.fxh” source for more details.

“shadowMap.fxh” also provides an HLSL function for determining a shadow bias
matrix, according to Microsoft’s standard formulation. You can call the macro
DECLARE_SHADOW_BIAS to create a property slider and corresponding matrix
automatically, or you can call the make_bias_mat() function using your own float
bias value.

Using Shadow Maps
NVIDIA hardware provides an accelerated and filtered shadow format that’s easy to
use and very fast. The DirectX texture format to use is D24S8_SHADOWMAP and is a
way to use the depth buffer from a shadow render. To declare such a shadow map,
we need to declare a render target for both the depth (shadow) map and the
(required, but usually un-used) color render target:

#define SHADOW_SIZE 256 /* or whatever size you need */
texture CTex : RENDERCOLORTARGET <

float2 Dimensions = {SHADOW_SIZE,SHADOW_SIZE};
string Format = "x8b8g8r8" ;
string UIWidget = "None"; >;

sampler CSamp = sampler_state {
texture = <CTex>;
AddressU = CLAMP; AddressV = CLAMP;
MipFilter = NONE;
MinFilter = LINEAR;
MagFilter = LINEAR;

};
texture DTex : RENDERDEPTHSTENCILTARGET <

float2 Dimensions = {SHADOW_SIZE,SHADOW_SIZE};
string format = "D24S8_SHADOWMAP";
string UIWidget = "None"; >;

sampler DSamp = sampler_state {
texture = <DTex>;
AddressU = CLAMP; AddressV = CLAMP;
MipFilter = NONE;
MinFilter = LINEAR;
MagFilter = LINEAR;

};

The shadowmap will be available to pixel shaders in the “DSamp” sampler.

05/16/05 3

 Shadowing Strategies for HLSL and FX Composer

As you might expect, the above construction is available as a “shadowMap.fxh”
macro, called DECLARE_SHADOW_MAPS(). The “CSamp” declaration here may be
gratuitous but is sometimes useful, such as when creating shadows from translucent
colored objects.

Sample vertex and pixel shaders to create and call-upon such a shadow map are also
provided in the header file. A good complete sample of usage to examine is
“shadowSpot2.fx” in the standard FX Composer distribution. This sample uses the
header-provided vertex shaders shadowGenVS() and shadowUseVS() in
combination with pixel shaders declared in the .fx file.

Assigning render targets in HLSL requires the use of DX-SAS scripting. Since we are
changing the view and clearing buffers, shaders that create and use shadow maps
need to be declared as with a “ScriptClass” value of “scene.”

Not all HLSL-compatible programs can read SAS scripts, however. For the sake of
such programs (e.g., 3DSMax 7.0), it’s recommended that your .fx file provide two
versions of the shader – one that uses shadow maps, and one that does not. The SAS
ScriptClass has a special value, “sceneorobject,” specifically to accommodate such
situations. Using “sceneorobject” will give your shader the widest applicability in
multiple applications.

Here is the STANDARDSGLOBAL declaration for “shadowSpot2.fx”:

float Script : STANDARDSGLOBAL <
 string UIWidget = "none";
 string ScriptClass = "sceneorobject";
 string ScriptOrder = "standard";
 string ScriptOutput = "color";
 string Script = "Tech=Technique?Shadowed:Unshadowed;";
> = 0.8; // version #

// The following global variables are values to be used
// when clearing color and/or depth buffers
float4 ClearColor <
 string UIWidget = "color";
 string UIName = "background";
> = {0,0,0,0.0};

float ClearDepth <string UIWidget = "none";> = 1.0;

float4 ShadowClearColor <
 string UIWidget = "none";
> = {1,1,1,0.0};

Note the declaration of two different techniques, which will appear as choices in the
FX Composer properties panel.

Following is the declarations of the first, “Shadowed” technique. Note the
assignments of color and depth targets, and importantly the assignment of a
RenderPort – this assignment tells the application (FX Composer) to use a light-
style (square) view matrix, clipping planes, etc. On the first pass, we tell the app to
use a lamp, and on the second pass we clear these values – this extra step is an
important one to avoid confusion for the host.

05/16/05 4

 Shadowing Strategies for HLSL and FX Composer

technique Shadowed <
 string Script = "Pass=MakeShadow;"
 "Pass=UseShadow;";
> {
 pass MakeShadow <
 string Script =
 "RenderColorTarget0=ColorShadMap;"
 "RenderDepthStencilTarget=ShadDepthTarget;"
 "RenderPort=light0;"
 "ClearSetColor=ShadowClearColor;"
 "ClearSetDepth=ClearDepth;"
 "Clear=Color;"
 "Clear=Depth;"
 "Draw=geometry;";
 > {
 VertexShader = compile vs_2_0
 shadowGenVS(WorldXf,
 WorldITXf,
 ShadowViewProjXf);
 ZEnable = true;
 ZWriteEnable = true;
 ZFunc = LessEqual;
 CullMode = None;
 // no pixel shader needed!
 }
 pass UseShadow <
 string Script =
 "RenderColorTarget0=;"
 "RenderDepthStencilTarget=;"
 "RenderPort=;"
 "ClearSetColor=ClearColor;"
 "ClearSetDepth=ClearDepth;"
 "Clear=Color;"
 "Clear=Depth;"
 "Draw=geometry;";
 > {
 VertexShader = compile vs_2_0
 shadowUseVS(WorldXf,
 WorldITXf,
 WorldViewProjXf,
 ShadowViewProjXf,
 ViewIXf,
 ShadBiasXf,
 SpotLightPos);
 ZEnable = true;
 ZWriteEnable = true;
 ZFunc = LessEqual;
 CullMode = None;
 PixelShader = compile ps_2_a useShadowPS();
 }
}

Next is the “Unshadowed” technique. Since this is meant to be applied as an object
surface material, rather than as a scene-wide command, it is much simpler. The
various render targets and RenderPort are being explicitly cleared here, but that’s

05/16/05 5

 Shadowing Strategies for HLSL and FX Composer

most to avoid potential problems if the app gets confused by the user switching back
and forth between techniques.

technique Unshadowed <
 string Script = "Pass=NoShadow;";
> {
 pass NoShadow <
 string Script =
 "RenderColorTarget0=;"
 "RenderDepthStencilTarget=;"
 "RenderPort=;"
 "ClearSetColor=ClearColor;"
 "ClearSetDepth=ClearDepth;"
 "Clear=Color;"
 "Clear=Depth;"
 "Draw=geometry;";
 > {
 VertexShader = compile vs_2_0
 shadowUseVS(WorldXf,
 WorldITXf,
 WorldViewProjXf,
 ShadowViewProjXf,
 ViewIXf,
 ShadBiasXf,
 SpotLightPos);
 ZEnable = true;
 ZWriteEnable = true;
 ZFunc = LessEqual;
 CullMode = None;
 PixelShader = compile ps_2_a unshadowedPS();
 }
}

In this case, we’re still using the shadowUseVS() vertex shader – this is mainly to
simplify the coding process. Some additional performace could be gained by writing a
slightly simpler vertex shader, but since this works and is fast (there are very few apps
that ever get limited by vertex-shader performance), it’s a reasonable compromise for
most shaders. In this case, we’re also using the shadowing projection matrix for a
second task – to project a “slide projector” RGB texture (“SpotSamp”) that we use
to shape the spotlight, rather than apply more-expensive math expressions in the
shader.

Here are the two different versions of the pixel shader, and a shared function that
performs most of the lighting calculation:

05/16/05 6

 Shadowing Strategies for HLSL and FX Composer

void lightingCalc(ShadowingVertexOutput IN,
 out float3 litContrib,
 out float3 ambiContrib)
{
 float3 Nn = normalize(IN.WNormal);
 float3 Vn = normalize(IN.WView);
 Nn = faceforward(Nn,-Vn,Nn);
 float falloff = 1.0 / dot(IN.LightVec,IN.LightVec);
 float3 Ln = normalize(IN.LightVec);
 float3 Hn = normalize(Vn + Ln);
 float hdn = dot(Hn,Nn);
 float ldn = dot(Ln,Nn);
 float4 litVec = lit(ldn,hdn,SpecExpon);
 ldn = litVec.y * SpotLightIntensity;
 ambiContrib = SurfColor * AmbiLightColor;
 float3 diffContrib = SurfColor*
 (Kd * ldn * SpotLightColor);
 float3 specContrib = ((ldn * litVec.z * Ks) *
 SpotLightColor);
 float3 result = diffContrib + specContrib;
 float cone = tex2Dproj(SpotSamp,IN.LProj);
 litContrib = ((cone*falloff) * result);
}

float4 useShadowPS(ShadowingVertexOutput IN) : COLOR
{
 float3 litPart, ambiPart;
 lightingCalc(IN,litPart,ambiPart);
 float4 shadowed = tex2Dproj(ShadDepthSampler,IN.LProj);
 return float4((shadowed.x*litPart)+ambiPart,1);
}

float4 unshadowedPS(ShadowingVertexOutput IN) : COLOR
{
 float3 litPart, ambiPart;
 lightingCalc(IN,litPart,ambiPart);
 return float4(litPart+ambiPart,1);
}

As you can see, the two pixel shaders are almost identical! The value of the
shadowing is returned by a single tex2Dproj() call to ShadDepthSampler, using
coordinates pre-calculated by the shadowUseVS() vertex shader. All of the BRDF-
calculation work is done in the dedicated lightingCalc() function.

05/16/05 7

 Shadowing Strategies for HLSL and FX Composer

Simple object with shadow map

Special “Roll Your Own” Maps
It is also possible to use other texture formats for shadow mapping, though your
shader will (a) have to render the depth as a color map and (b) will need to do any
texture filtering in the shader, rather than through the dedicated hardware channel
used by D24S8_SHADOWMAP.

The .fx examples included with the NVIDIA SDK include several such samples,
such as shaders that perform user-defined PCF filtering, perspective shadow maps,
and blended multi-view soft shadows.

Shadow with wide PCF sampling and

floating-point shadow map

05/16/05 8

 Shadowing Strategies for HLSL and FX Composer

Using Shadow Stencil
Volumes

Using extruded shadow volumes and stenciling is a popular method for games,
largely because it’s fast, simple to implement, and will run on older hardware as well
as the latest GPUs. There are some downsides to stenciling, particularly relating to
the fact that stencil shadowing is immediate – that is, your program must clear the
stencil, render the shadow volume to set the stencil, and then USE the stencil – all in
that exact order, without much opportunity for saving the results for re-use later.
This means that the shadowing item must be extruded and rendered, then all object
receiving that shadow must be rendered, in a fairly strict order of operations (unlike
shadow maps, which can be rendered and stored for use later, potentially on multiple
objects or even across multiple frames of animation). For many games this is an
acceptable compromise.

A second key issue is that the geometry in your scene (at least for shadow-casting
objects) must consist of closed volumes, and must be constructed in a special way.
Below, consider two polygons, that share a common edge marked AB. The surface
normal of the lighter polygon faces the light, while the dark one faces away from the
light.

To create a shadow volume, we will extrude the darker polygon away from the lighter
one, pushing it away from the light source (to some distance, possibly infinity). For
this purpose, the polygons can no longer share edge AB – the edge needs to be split
so that the vertices of the each polygon don’t distort the other during the shadow-
extrusion process.

Further, the sides of the shadow volume need to also be rendered. So two new
“ghost” triangles must be added: AA’B’ and B’A’A.

05/16/05 9

 Shadowing Strategies for HLSL and FX Composer

For some shadow-extrusion schemes, these new triangles can be inserted by the CPU
dynamically for each frame, and the vertex buffer completely refreshed.

Alternatively, without CPU cost but doubling the vertex count, the ghost polygons
can be added to the model and always be left in-place! If no shadow extrusion occurs,
the A will be coincident with A’, B with B’, and the area of the ghost triangles will be
zero. The triangles will not rasterize so their cost to the pixel shading engine is also
zero.

The extra vertices will require extra vertex shader processing, but happily we can use
this to our advantage, letting the vertex shader itself do the extrusion step based
simply on a light direction (or location of a point light source).

The “stencilVolume.fx” shader effect does just this, so that the CPU impact is
minimal. To use this effect, we need to load a model that has already had the ghost
polygons inserted.

For models in the .obj format, the SDK tool “splitPolyEdges.pl” is provided to insert
such edges. The command

perl splitPolyEdges.pl myFile.obj > splitFile.obj

will read the moel in “myFile.obj” and write a split-edged copy into “splitFile.obj”
containing the new polygons and vertices. Note that only polygons are converted –
other .obj entities like patches are ignored since they are not use in shadow
generation.

Here’s a vertex shader for such a model, which does the extrusion work based on a
fixed light position (“LightPos”). The value “GeomInset” defines a slight depth-
offset value to avoid z-conflicts in the shadow (like shadow map biasing), added to
avoid popping on polygons near the grazing angle.

float4 extrudeVS(float4 Position : POSITION,
 float4 Normal : NORMAL0, // normalized
 float4 LightPos,
 float GeomInset,
 float ShadowExtrudeDist,
 float4x4 WorldViewProjXf) : POSITION
{
 // Create normalized vector from vertex to light
 float4 Ln = normalize(Position-LightPos);
 float ldn = -dot(Ln.xyz,Normal.xyz);
 float3 inV = Normal.xyz * GeomInset;
 float4 inset_pos = float4(

05/16/05 10

 Shadowing Strategies for HLSL and FX Composer

 (Position.xyz - inV),Position.w);
 float4 extrusion_vec = Lvec * ShadowExtrudeDist;
 // if ldn < 0 then the vertex faces away from the light,
 // so move it away from the light.
 float toggle = (float) (ldn < 0.0); // boolean as float
 float4 new_position = extrusion_vec*toggle + inset_pos;
 float4 HPosition = mul(new_position,WorldViewProjXf);
 return(HPosition);
}

The pixel shader is actually arbitrary, and can even be ignored for trivial cases. The
l

ct as multiple passes:

stencil will suppress rendering entirely for pixels within the shadow, so whatever pixe
shader is used need not worry about the shadowing algorithm.

The technique definition performs the complete shadowing effe

technique shadowCW <
 string Script = "Pass=layZ;"
 "Pass=back;"
 "Pass=front;"
 "Pass=lighting;";
 > {
 pass layZ <
 string Script = "Draw=geometry;";
 > {
 VertexShader = compile vs_1_0 backingVS();
 ZEnable = true;
 ZWriteEnable = true;
 CullMode = None;
 StencilEnable = false;
 }
 pas ck < s ba
 string Script = "Draw=geometry;";
 > {
 VertexShader = compile vs_1_1 extrudeVS();
 ZEnable = true;
 ZWriteEnable = true;
 ZFunc = lessequal;
 CullMode = CW;
 StencilEnable = True;
 StencilPass = Keep;
 StencilFail = Keep;
 StencilZFail = IncrSat;
 StencilFunc = Always;
 ColorWriteEnable = 0;
 }
 pas ont < s fr
 string Script = "Draw=geometry;";
 > {
 VertexShader = compile vs_1_1 extrudeVS();
 ZEnable = true;
 ZWriteEnable = true;
 ZFunc = lessequal;
 CullMode = CCW;
 // TwoSidedStencilMode = false; // needed?

05/16/05 11

 Shadowing Strategies for HLSL and FX Composer

 StencilEnable = True;
 StencilPass = Keep;
 StencilFail = Keep;
 StencilZFail = DecrSat;
 StencilFunc = Always;
 ColorWriteEnable = 0;
 }
 pas ghting < s li
 string Script = "Draw=geometry;";
 > {
 VertexShader = compile vs_1_1 simpleVS();
 ZEnable = true;
 // ZWriteEnable = true;
 CullMode = None;
 StencilEnable = True;
 StencilPass = Keep;
 StencilZFail = Keep;
 StencilFail = Keep;
 StencilRef = 0;
 StencilFunc = Equal;
 }
}

Soft Stencil Shadows
encil shadows can be found in the file “softStencilShadow.fx” –

ross the scene as a grayscale.

n
epth

th the color-rendered scene to

ot “physically correct,” but is less

A recent twist on st
in this version, the stencil is created in the usual way but then rendered onto a white
field with a black shadow, and saved to a texture.

Another texture is rendered, with stored depths ac

A third texture is rendered containing the overall un-shadowed color scene.

A blur pass is then run on the black and white shadow, with this caveat: whe
sampling neighboring texels for blur, both those texels and the corresponding d
texels are checked. If the depth value is significantly different from the depth of the
texel the shader is currently blurring (based on some user-defined threshold), then
that value is ignored. The result is that only texels on the same surface are blurred
together, while edges between objects remain sharp.

This final “smart-blurred” image is then multiplied wi
create the final rendered and shadowed picture.

The blur is uniform across screen space, so it is n
harsh than typical stencil shadowing, and for many scenes it is entirely adequate.

05/16/05 12

 Shadowing Strategies for HLSL and FX Composer

Soft stencil shadowing

05/16/05 13

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”)
ARE BEING PROVIDED “AS IS." NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED,
STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS
ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A
PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation
assumes no responsibility for the consequences of use of such information or for any
infringement of patents or other rights of third parties that may result from its use. No license is
granted by implication or otherwise under any patent or patent rights of NVIDIA Corporation.
Specifications mentioned in this publication are subject to change without notice. This
publication supersedes and replaces all information previously supplied. NVIDIA Corporation
products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, and FX Composer are trademarks or registered trademarks of NVIDIA
Corporation in the United States and other countries. Other company and product names may
be trademarks of the respective companies with which they are associated.

Copyright

© 2005 NVIDIA Corporation. All rights reserved.

NVIDIA Corporation
2701 San Tomas Expressway

Santa Clara, CA 95050
www.nvidia.com

	Shadowing Strategies
	Overview
	Shadow Mapping Overview
	Shadow Volume Stenciling Overview

	Shadow Transforms
	Using Shadow Maps
	Special “Roll Your Own” Maps

	Using Shadow Stencil Volumes
	Soft Stencil Shadows

