1.1

Chapter 1

Introduction

This chapter has the following four sections:

e “What Is Cg?” introduces the Cg programming language.

* “Vertices, Fragments, and the Graphics Pipeline” describes the data flow of
modern graphics hardware and explains how Cg fits into this data flow.

* “Cg’s Historical Development” provides some background on how Cg was

developed.

* “The Cg Environment” explains how applications go about using Cg programs
through the Cg runtime and existing 3D application programming interfaces

(APIs).

What Is Cg?

This book teaches you how to use a programming language called Cg. The Cg lan-
guage makes it possible for you to control the shape, appearance, and motion of ob-
jects drawn using programmable graphics hardware. It marries programmatic control
of these attributes with the incredible speed and capabilities of today’s graphics proces-
sors. Never before have computer graphics practitioners, whether artists or program-
mers, had so much control over the real-time images they generate.

Cg provides developers with a complete programming platform that is easy to use and
enables the fast creation of special effects and real-time cinematic-quality experiences
on multiple platforms. By providing a new level of abstraction, Cg removes the need
for developers to program directly to the graphics hardware assembly language, and

1.1 What Is Cg?

—p—

1.1.1

1.1.2

o

thereby more easily target OpenGL, DirectX, Windows, Linux, Macintosh OS X, and
console platforms such as the Xbox. Cg was developed in close collaboration with
Microsoft Corporation and is compatible with both the OpenGL API and Microsoft’s
High-Level Shading Language (HLSL) for DirectX 9.0.

Cg stands for “C for graphics.” The C programming language is a popular, general-
purpose language invented in the 1970s. Because of its popularity and clean design, C
provided the basis for several subsequent programming languages. For example, C++
and Java base their syntax and structure largely on C. The Cg language bases itself on
C as well. If you are familiar with C or one of the many languages derived from C,
then Cg will be easy to learn.

On the other hand, if you are not familiar with C or even programming languages in
general but you enjoy computer graphics and want to learn something new, read on
anyway. Cg programs tend to be short and understandable.

Much of this chapter is background that provides valuable context for understanding
Cg and using it effectively. On the other hand, you may find Cg is easier to learn by
doing. Feel free to skip to Chapter 2 at any time if you feel more comfortable just
diving into the tutorial.

A Language for Programming Graphics Hardware

Cg is different from C, C++, and Java because it is very specialized. No one will ever
write a spreadsheet or word processor in Cg. Instead, Cg targets the ability to pro-
grammatically control the shape, appearance, and motion of objects rendered using
graphics hardware. Broadly, this type of language is called a shading language. How-
ever, Cg can do more than just shading. For example, Cg programs can perform phys-
ical simulation, compositing, and other nonshading tasks.

Think of a Cg program as a detailed recipe for how to render an object by using pro-
grammable graphics hardware. For example, you can write a Cg program to make a

surface appear bumpy or to animate a virtual character. Later, in Section 1.3, you will
learn more about the history of shading languages and where Cg fits into this history.

Cg’s Data-Flow Model
In addition to being specialized for graphics, Cg and other shading languages are dif-

ferent from conventional programming languages because they are based on a data-

Chapter 1: Introduction

—p—

1.1.3

o

flow computational model. In such a model, computation occurs in response to data
that flows through a sequence of processing steps.

Cg programs operate on vertices and fragments (think “pixels” for now if you do not
know what a fragment is) that are processed when rendering an image. Think of a Cg
program as a black box into which vertices or fragments flow on one side, are some-
how transformed, and then flow out on the other side. However, the box is not really
a black box because you get to determine, by means of the Cg programs you write,
exactly what happens inside.

Every time a vertex is processed or the rasterizer generates a fragment while rendering
a 3D scene, your corresponding vertex or fragment Cg program executes. Section 1.3
explains Cg’s data-flow model further.

Most recent personal computers—and all recent game consoles—contain a graphics
processing unit (GPU) that is dedicated to graphics tasks such as transforming and
rasterizing 3D models. Your Cg programs actually execute within the GPU of your
computer.

GPU Specialization and CPU Generalization

Whether or not a personal computer or game console has a GPU, there must be a
CPU that runs the operating system and application programs. CPUs are, by design,
general purpose. CPUs execute applications (for example, word processors and ac-
counting packages) written in general-purpose languages, such as C++ or Java.

Because of the GPU’s specialized design, it is much faster at graphics tasks, such as
rendering 3D scenes, than a general-purpose CPU would be. New GPUs process tens
of millions of vertices per second and rasterize hundreds of millions or even billions of
fragments per second. Future GPUs will be even speedier. This is overwhelmingly
faster than the rate at which a CPU could process a similar number of vertices and
fragments. However, the GPU cannot execute the same arbitrary, general-purpose
programs that a CPU can.

The specialized, high-performance nature of the GPU is why Cg exists. General-
purpose programming languages are too open-ended for the specialized task of pro-
cessing vertices and fragments. In contrast, the Cg language is fully dedicated to this
task. Cg also provides an abstract execution model that matches the GPU’s execution
model. You will learn about the unique execution model of GPUs in Section 1.2.

1.1 What Is Cg?

—p—

1.1.4

1.1.5

o

The Performance Rationale for Cg

To sustain the illusion of interactivity, a 3D application needs to maintain an anima-
tion rate of 15 or more images per second. Generally, we consider 60 or more frames
per second to be “real time,” the rate at which interaction with applications appears to
occur instantaneously. The computer’s display may have a million or more pixels that
require redrawing. For 3D scenes, the GPU typically processes every pixel on the
screen many times to account for how objects occlude each other, or to improve the
appearance of each pixel. This means that real-time 3D applications can require hun-
dreds of millions of pixel updates per second. Along with the required pixel process-
ing, 3D models are composed of vertices that must be transformed properly before
they are assembled into polygons, lines, and points that will be rasterized into pixels.
This can require transforming tens of millions of vertices per second.

Moreover, this graphical processing happens in addition to the considerable amount of
effort required of the CPU to update the animation for each new image. The reality is
that we need both the CPU and the GPU’s specialized graphics-oriented capabilities.
Both are required to render scenes at the interactive rates and quality standards that
users of 3D applications and games demand. This means a developer can write a 3D
application or game in C++ and then use Cg to make the most of the GPU’s addi-
tional graphics horsepower.

Coexistence with Conventional Languages

In no way does Cg replace any existing general-purpose languages. Cg is an auxiliary
language, designed specifically for GPUs. Programs written for the CPU in conven-
tional languages such as C or C++ can use the Cg runtime (described in Section 1.4.2)
to load Cg programs for GPUs to execute. The Cg runtime is a standard set of subrou-
tines used to load, compile, manipulate, and configure Cg programs for execution by
the GPU. Applications supply Cg programs to instruct GPUs on how to accomplish
the programmable rendering effects that would not otherwise be possible on a CPU at
the rendering rates a GPU is capable of achieving.

Cg enables a specialized style of parallel processing. While your CPU executes a con-
ventional application, that application also orchestrates the parallel processing of ver-
tices and fragments on the GPU, by programs written in Cg.

If a real-time shading language is such a good idea, why didn’t someone invent Cg
sooner? The answer has to do with the evolution of computer graphics hardware. Prior

Chapter 1: Introduction

—p—

1.1.6

o

to 2001, most computer graphics hardware—certainly the kind of inexpensive graph-
ics hardware in PCs and game consoles—was hard-wired to the specific tasks of vertex
and fragment processing. By “hard-wired,” we mean that the algorithms were fixed
within the hardware, as opposed to being programmable in a way that is accessible to
graphics applications. Even though these hard-wired graphics algorithms could be
configured by graphics applications in a variety of ways, the applications could not
reprogram the hardware to do tasks unanticipated by the designers of the hardware.
Fortunately, this situation has changed.

Graphics hardware design has advanced, and vertex and fragment processing units in
recent GPUs are truly programmable. Before the advent of programmable graphics
hardware, there was no point in providing a programming language for it. Now that
such hardware is available, there is a clear need to make it easier to program this hard-
ware. Cg makes it much easier to program GPUs in the same manner that C made it
much easier to program CPUs.

Before Cg existed, addressing the programmable capabilities of the GPU was possible
only through low-level assembly language. The cryptic instruction syntax and manual
hardware register manipulation required by assembly languages—such as DirectX 8
vertex and pixel shaders and some OpenGL extensions—made it a painful task for
most developers. As GPU technology made longer and more complex assembly lan-
guage programs possible, the need for a high-level language became clear. The exten-
sive low-level programming that had been required to achieve optimal performance
could now be delegated to a compiler, which optimizes the code output and handles
tedious instruction scheduling. Figure 1-1 is a small portion of a complex assembly
language fragment program used to represent skin. Clearly, it is hard to comprehend,
particularly with the specific references to hardware registers.

In contrast, well-commented Cg code is more portable, more legible, easier to debug,
and easier to reuse. Cg gives you the advantages of a high-level language such as C
while delivering the performance of low-level assembly code.

Other Aspects of Cg

Cg is a language for programming “in the small.” That makes it much simpler than a
modern general-purpose language such as C++. Because Cg specializes in transforming
vertices and fragments, it does not currently include many of the complex features
required for massive software engineering tasks. Unlike C++ and Java, Cg does not
support classes and other features used in object-oriented programming. Current Cg

1.1 What Is Cg?

—p—

o

DEFINE LUMINANCE = {0.299, 0.587, 0.114, 0.0};
TEX HO, f£[TEX0], TEX4, 2D;

TEX H1, f£[TEX2], TEX5, CUBE;

DP3X H1l.xyz, H1l, LUMINANCE;

MULX HO.w, HO.w, LUMINANCE.w;

MULX Hl.w, Hl.x, Hl.x;

MOVH H2, f[TEX3].wxyz;

MULX Hl.w, Hl1.x, Hl.w;

DP3X HO.xyz, H2.xzyw, HO;

MULX HO.xyz, HO, Hl.w;

TEX H1, f[TEX0], TEX1l, 2D;

TEX H3, f[TEX0], TEX3, 2D;

MULX HO.xyz, HO, H3;

MADX Hl1l.w, Hl.w, 0.5, 0.5;

MULX Hl.xyz, H1, {0.15, 0.15, 1.0, 0.0};
MOVX HO.w, Hl.w;

TEX H1, H1, TEX7, CUBE;

TEX H3, f[TEX3], TEX2, 1D;

MULX H3.w, HO.w, H2.w;

MULX H3.xyz, H3, H3.w;

Figure 1-1. A Snippet of Assembly Language Code

implementations do not provide pointers or even memory allocation (though future
implementations may, and keywords are appropriately reserved). Cg has absolutely no
support for file input/output operations. By and large, these restrictions are not per-
manent limitations in the language, but rather are indicative of the capabilities of
today’s highest performance GPUs. As technology advances to permit more general
programmability on the GPU, you can expect Cg to grow appropriately. Because Cg is
closely based on C, future updates to Cg are likely to adopt language features from C
and C++.

Cg provides arrays and structures. It has all the flow-control constructs of a modern
language: loops, conditionals, and function calls.

Cg natively supports vectors and matrices because these data types and related math
operations are fundamental to graphics and most graphics hardware directly supports
vector data types. Cg has a library of functions, called the Standard Library, that is

Chapter 1: Introduction

—p—

1.1.7

o

well suited for the kind of operations required for graphics. For example, the Cg Stan-
dard Library includes a reflect function for computing reflection vectors.

Cg programs execute in relative isolation. This means that the processing of a particu-
lar vertex or fragment has no effect on other vertices or fragments processed at the
same time. There are no side effects to the execution of a Cg program. This lack of
interdependency among vertices and fragments makes Cg programs extremely well
suited for hardware execution by highly pipelined and parallel hardware.

The Limited Execution Environment of Cg Programs

When you write a program in a language designed for modern CPUs using a modern
operating system, you expect that a more-or-less arbitrary program, as long as it is
correct, will compile and execute properly. This is because CPUs, by design, execute
general-purpose programs for which the overall system has more than sufficient re-
sources.

However, GPUs are specialized rather than general-purpose, and the feature set of
GPUs is still evolving. Not everything you can write in Cg can be compiled to execute
on a given GPU. Cg includes the concept of hardware “profiles,” one of which you
specify when you compile a Cg program. Each profile corresponds to a particular
combination of GPU architecture and graphics API. Your program not only must be
correct, but it also must limit itself to the restrictions imposed by the particular profile
used to compile your Cg program. For example, a given fragment profile may limit
you to no more than four texture accesses per fragment.

As GPUs evolve, additional profiles will be supported by Cg that correspond to more
capable GPU architectures. In the future, profiles will be less important as GPUs be-
come more full-featured. But for now Cg programmers will need to limit programs to
ensure that they can compile and execute on existing GPUs. In general, future profiles
will be supersets of current profiles, so that programs written for today’s profiles will
compile without change using future profiles.

This situation may sound limiting, but in practice the Cg programs shown in this
book work on tens of millions of GPUs and produce compelling rendering effects.
Another reason for limiting program size and scope is that the smaller and more effi-
cient your Cg programs are, the faster they will run. Real-time graphics is often about
balancing increased scene complexity, animation rates, and improved shading. So it’s
always good to maximize rendering efficiency through judicious Cg programming.

1.1 What Is Cg?

—p—

1.2

1.2.1

o

Keep in mind that the restrictions imposed by profiles are really limitations of current
GPUs, not Cg. The Cg language is powerful enough to express shading techniques
that are not yet possible with all GPUs. With time, GPU functionality will evolve far
enough that Cg profiles will be able to run amazingly complex Cg programs. Cg is a
language for both current and future GPUs.

Vertices, Fragments, and the Graphics Pipeline

To put Cg into its proper context, you need to understand how GPUs render images.
This section explains how graphics hardware is evolving and then explores the modern
graphics hardware-rendering pipeline.

The Evolution of Computer Graphics Hardware

Computer graphics hardware is advancing at incredible rates. Three forces are driving
this rapid pace of innovation, as shown in Figure 1-2. First, the semiconductor indus-
try has committed itself to doubling the number of transistors (the basic unit of com-
puter hardware) that fit on a microchip every 18 months. This constant redoubling of

Moore's Law:
continuing redoubling
of computer power

The embarrassing
parallelism of the
image generation

Human desire for
visual stimulation
and entertainment

Continually improving
graphies hardware

Figure 1-2. Forces Driving Graphics Hardware Innovation

Chapter 1: Introduction

—p—

1.2.2

o

computer power, historically known as Moore’s Law, means cheaper and faster com-
puter hardware, and is the norm for our age.

The second force is the vast amount of computation required to simulate the world
around us. Our eyes consume and our brains comprehend images of our 3D world at
an astounding rate and with startling acuity. We are unlikely ever to reach a point
where computer graphics becomes a substitute for reality. Reality is just too real.
Undaunted, computer graphics practitioners continue to rise to the challenge. Fortu-
nately, generating images is an embarrassingly parallel problem. What we mean by
“embarrassingly parallel” is that graphics hardware designers can repeatedly split up
the problem of creating realistic images into more chunks of work that are smaller
and easier to tackle. Then hardware engineers can arrange, in parallel, the ever-greater
number of transistors available to execute all these various chunks of work.

Our third force is the sustained desire we all have to be stimulated and entertained
visually. This is the force that “connects” the source of our continued redoubling of
computer hardware resources to the task of approximating visual reality ever more
realistically than before.

As Figure 1-2 illustrates, these insights let us confidently predict that computer graph-
ics hardware is going to get much faster. These innovations whet our collective ap-
petite for more interactive and compelling 3D experiences. Satisfying this demand is
what motivated the development of the Cg language.

Four Generations of Computer Graphics Hardware

In the mid-1990s, the world’s fastest graphics hardware consisted of multiple chips
that worked together to render images and display them to a screen. The most complex
computer graphics systems consisted of dozens of chips spread over several boards. As
time progressed and semiconductor technology improved, hardware engineers incor-
porated the functionality of complicated multichip designs into a single graphics chip.
This development resulted in tremendous economies of integration and scale.

You may be surprised to learn that the GPU now exceeds the CPU in the number of
transistors present in each microchip. Transistor count is a rough measure of how
much computer hardware is devoted to a microchip. For example, Intel packed its 2.4
GHz Pentium 4 with 55 million transistors; NVIDIA used over 125 million transis-
tors in the original GeForce FX GPU.

1.2 Vertices, Fragments, and the Graphics Pipeline

—p—

10

o

NVIDIA introduced the term “GPU” in the late 1990s when the legacy term “VGA
controller” was no longer an accurate description of the graphics hardware in a PC.
IBM had introduced Video Graphics Array (VGA) hardware in 1987. At that time,
the VGA controller was what we now call a “dumb” frame buffer. This meant that the
CPU was responsible for updating all the pixels. Today the CPU rarely manipulates
pixels directly. Instead, graphics hardware designers build the “smarts” of pixel updates
into the GPU.

Industry observers have identified four generations of GPU evolution so far. Each
generation delivers better performance and evolving programmability of the GPU
feature set. Each generation also influences and incorporates the functionality of the
two major 3D programming interfaces, OpenGL and DirectX. OpenGL is an open
standard for 3D programming for Windows, Linux, UNIX, and Macintosh comput-
ers. DirectX is an evolving set of Microsoft multimedia programming interfaces, in-
cluding Direct3D for 3D programming,.

Pre-GPU Graphics Acceleration

Prior to the introduction of GPUs, companies such as Silicon Graphics (SGI) and
Evans & Sutherland designed specialized and expensive graphics hardware. The graph-
ics systems developed by these companies introduced many of the concepts, such as
vertex transformation and texture mapping, that we take for granted today. These sys-
tems were very important to the historical development of computer graphics, but
because they were so expensive, they did not achieve the mass-market success of single-
chip GPUs designed for PCs and video game consoles. Today, GPUs are far more pow-
erful and much cheaper than any prior systems.

First-Generation GPUs

The first generation of GPUs (up to 1998) includes NVIDIAs TNT2, ATT’s Rage, and
3dfx’s Voodoo3. These GPUs are capable of rasterizing pre-transformed triangles and
applying one or two textures. They also implement the DirectX 6 feature set. When
running most 3D and 2D applications, these GPUs completely relieve the CPU from
updating individual pixels. However, GPUs in this generation suffer from two clear
limitations. First, they lack the ability to transform vertices of 3D objects; instead,
vertex transformations occur in the CPU. Second, they have a quite limited set of
math operations for combining textures to compute the color of rasterized pixels.

Chapter 1: Introduction

—p—

o

Second-Generation GPUs

The second generation of GPUs (1999-2000) includes NVIDIA’s GeForce 256 and
GeForce2, ATT’s Radeon 7500, and S$3’s Savage3D. These GPUs offload 3D vertex
transformation and lighting (T&L) from the CPU. Fast vertex transformation was one
of the key capabilities that differentiated high-end workstations from PCs prior to this
generation. Both OpenGL and DirectX 7 support hardware vertex transformation.
Although the set of math operations for combining textures and coloring pixels ex-
panded in this generation to include cube map textures and signed math operations,
the possibilities are still limited. Put another way, this generation is more configurable,
but still not truly programmable.

Third-Generation GPUs

The third generation of GPUs (2001) includes NVIDIA’s GeForce3 and GeForce4 Ti,
Microsoft’s Xbox, and ATT’s Radeon 8500. This generation provides vertex program-
mability rather than merely offering more configurability. Instead of supporting the
conventional transformation and lighting modes specified by OpenGL and DirectX 7,
these GPUs let the application specify a sequence of instructions for processing ver-
tices. Considerably more pixel-level configurability is available, but these modes are
not powerful enough to be considered truly programmable. Because these GPUs sup-
port vertex programmability but lack true pixel programmability, this generation is
transitional. DirectX 8 and the multivendor ARB_vertex_program OpenGL exten-
sion expose vertex-level programmability to applications. DirectX 8 pixel shaders and
various vendor-specific OpenGL extensions expose this generation’s fragment-level

configurability.

Fourth-Generation GPUs

The fourth and current generation of GPUs (2002 and on) includes NVIDIA’s
GeForce FX family with the CineFX architecture and ATT’s Radeon 9700. These
GPUs provide both vertex-level and pixel-level programmability. This level of pro-
grammability opens up the possibility of offloading complex vertex transformation
and pixel-shading operations from the CPU to the GPU. DirectX 9 and various
OpenGL extensions expose the vertex-level and pixel-level programmability of these
GPUs. This is the generation of GPUs where Cg gets really interesting. Table 1-1 lists
selected NVIDIA GPUs representing these various GPU generations.

11
1.2 Vertices, Fragments, and the Graphics Pipeline

—p—

o

Table 1-1. Features and Performance Evolution of Selected NVIDIA GPUs, by Generation

Antialiasing Polygon

Generation Year Product Name Process Transistors Fill Rate Rate Note
First Late 1998 RIVATNT 0.25 7M 50 M 6M 1
First Early 1999 RIVATNT2 0.22 IM 75 M IM 2
Second Late 1999 GeForce 256 022p 23M 120 M I5M 3
Second Early 2000 GeForce2 0.18p 25M 200 M 25M 4
Third Early 2001 GeForce3 0.15p 57M 800 M 30 M 5
Third Early 2002 GeForce4 Ti 0.15p 63M 1200 M 60 M 6
Fourth Early 2003 GeForce FX 0.13p 125M 2000 M 200 M 7
Notes

1. Dual texture DirectX 6

2. AGP 4x

3. Fixed-function vertex hardware, register combiners, cube maps, DirectX 7

4. Performance, double data-rate (DDR) memory

5. Vertex programs, quad-texturing, texture shaders, DirectX 8

6. Performance, antialiasing

7. Massive vertex and fragment programmability, floating-point pixels, DirectX 9, AGP 8x

The table uses the following terms:

* Process—the minimum feature size in microns (i, millionths of a meter) for the
semiconductor process used to fabricate each microchip

* Transistors—an approximate measure, in millions (M), of the chips’ design and
manufacturing complexity

* Antialiasing fill rate—a GPU’s ability to fill pixels, measured in millions (M) of 32-
bit RGBA pixels per second, assuming two-sample antialiasing; numbers in 7zalics
indicate fill rates that are de-rated because the hardware lacks true antialiased ren-
dering

* Polygon rate—a GPU’s ability to draw triangles, measured in millions (M) of trian-

gles per second

The notes highlight the most significant improvements in each design. Performance
rates may not be comparable with designs from other hardware vendors.

Future GPUs will further generalize the programmable aspects of current GPUs, and
Cg will make this additional programmability easy to use.

Chapter 1: Introduction

—p—

1.2.3

o

Vertex Connectivity

l Colored
Fragments Fragments

Primitive Fragment Rast
3 M) Assembly and| P Texturing and | P 0 ait?r -y
Rasterizatio Coloring perater

Vertices Transformed Pixel
Vertices ' Updates
Pixel Positions

Figure 1-3. The Graphics Hardware Pipeline

The Graphics Hardware Pipeline

A pipeline is a sequence of stages operating in parallel and in a fixed order. Each stage
receives its input from the prior stage and sends its output to the subsequent stage.
Like an assembly line where dozens of automobiles are manufactured at the same
time, with each automobile at a different stage of the line, a conventional graphics
hardware pipeline processes a multitude of vertices, geometric primitives, and frag-
ments in a pipelined fashion.

Figure 1-3 shows the graphics hardware pipeline used by today’s GPUs. The 3D appli-
cation sends the GPU a sequence of vertices batched into geometric primitives: typi-
cally polygons, lines, and points. As shown in Figure 1-4, there are many ways to
specify geometric primitives.

Every vertex has a position but also usually has several other attributes such as a color,
a secondary (or specular) color, one or multiple texture coordinate sets, and a normal
vector. The normal vector indicates what direction the surface faces at the vertex, and
is typically used in lighting calculations.

Vertex Transformation

Vertex transformation is the first processing stage in the graphics hardware pipeline.
Vertex transformation performs a sequence of math operations on each vertex. These
operations include transforming the vertex position into a screen position for use by
the rasterizer, generating texture coordinates for texturing, and lighting the vertex to
determine its color. We will explain many of these tasks in subsequent chapters.

13
1.2 Vertices, Fragments, and the Graphics Pipeline

—p—

14

Points Independent Lines Line Loop

Triangle Strip Triangle Fan

Independent Quads Quad Strip Polygon

Figure 1-4. Types of Geometric Primitives

Primitive Assembly and Rasterization

The transformed vertices flow in sequence to the next stage, called primitive assembly
and rasterization. First, the primitive assembly step assembles vertices into geometric
primitives based on the geometric primitive batching information that accompanies
the sequence of vertices. This results in a sequence of triangles, lines, or points. These
primitives may require clipping to the view frustum (the view’s visible region of 3D
space), as well as any enabled application-specified clip planes. The rasterizer may also
discard polygons based on whether they face forward or backward. This process is
known as culling.

Polygons that survive these clipping and culling steps must be rasterized. Rasterization
is the process of determining the set of pixels covered by a geometric primitive. Poly-
gons, lines, and points are each rasterized according to the rules specified for each type

Chapter 1: Introduction

—p—

o

of primitive. The results of rasterization are a set of pixel locations as well as a set of
fragments. There is no relationship between the number of vertices a primitive has and
the number of fragments that are generated when it is rasterized. For example, a trian-
gle made up of just three vertices could take up the entire screen, and therefore gener-
ate millions of fragments!

Earlier, we told you to think of a fragment as a pixel if you did not know precisely
what a fragment was. At this point, however, the distinction between a fragment and a
pixel becomes important. The term pixel is short for “picture element.” A pixel repre-
sents the contents of the frame buffer at a specific location, such as the color, depth,
and any other values associated with that location. A fragment is the state required
potentially to update a particular pixel.

The term “fragment” is used because rasterization breaks up each geometric primitive,
such as a triangle, into pixel-sized fragments for each pixel that the primitive covers. A
fragment has an associated pixel location, a depth value, and a set of interpolated pa-
rameters such as a color, a secondary (specular) color, and one or more texture coordi-
nate sets. These various interpolated parameters are derived from the transformed
vertices that make up the particular geometric primitive used to generate the
fragments. You can think of a fragment as a “potential pixel.” If a fragment passes the
various rasterization tests (in the raster operations stage, which is described shortly),
the fragment updates a pixel in the frame buffer.

Interpolation, Texturing, and Coloring

Once a primitive is rasterized into a collection of zero or more fragments, the interpo-
lation, texturing, and coloring stage interpolates the fragment parameters as necessary,
performs a sequence of texturing and math operations, and determines a final color
for each fragment. In addition to determining the fragment’s final color, this stage
may also determine a new depth or may even discard the fragment to avoid updating
the frame buffer’s corresponding pixel. Allowing for the possibility that the stage may
discard a fragment, this stage emits one or zero colored fragments for every input frag-
ment it receives.

Raster Operations

The raster operations stage performs a final sequence of per-fragment operations imme-
diately before updating the frame buffer. These operations are a standard part of
OpenGL and Direct3D. During this stage, hidden surfaces are eliminated through a

15
1.2 Vertices, Fragments, and the Graphics Pipeline

—p—

16

o

Fragment & Pixel Sclesa Alpha
Associated . Ownership . Test ‘ Test
Data Test ‘
Depth Stencil
Test l— Test
E L
Depth : : Stencil :
Buffer - T Buffer T
’ . . . Color
Blendin Ditherin Logic O .
g \ » g | gic Op > Buffer
I

Figure 1-5. Standard OpenGL and Direct3D Raster Operations

process known as depth testing. Other effects, such as blending and stencil-based shad-
owing, also occur during this stage.

The raster operations stage checks each fragment based on a number of tests, includ-
ing the scissor, alpha, stencil, and depth tests. These tests involve the fragment’s final
color or depth, the pixel location, and per-pixel values such as the depth value and
stencil value of the pixel. If any test fails, this stage discards the fragment without up-
dating the pixel’s color value (though a stencil write operation may occur). Passing the
depth test may replace the pixel’s depth value with the fragment’s depth. After the
tests, a blending operation combines the final color of the fragment with the corre-
sponding pixel’s color value. Finally, a frame buffer write operation replaces the pixel’s
color with the blended color. Figure 1-5 shows this sequence of operations.

Figure 1-5 shows that the raster operations stage is actually itself a series of pipeline
stages. In fact, all of the previously described stages can be broken down into substages
as well.

Visualizing the Graphics Pipeline
Figure 1-6 depicts the stages of the graphics pipeline. In the figure, two triangles are

rasterized. The process starts with the transformation and coloring of vertices. Next,
the primitive assembly step creates triangles from the vertices, as the dotted lines indi-

Chapter 1: Introduction

—p—

1.2.4

0 & - °
- e - - . ‘e -
L] [+] .':—-——-——-——-—--‘:‘-G
Colored Vertices After Interpolation, Texturing,

Primitive Assembly Rasterization

Vertex Transformation and Coloring

Figure 1-6. Visualizing the Graphics Pipeline

cate. After this, the rasterizer “fills in” the triangles with fragments. Finally, the register
values from the vertices are interpolated and used for texturing and coloring. Notice
that many fragments are generated from just a few vertices.

The Programmable Graphics Pipeline

The dominant trend in graphics hardware design today is the effort to expose more
programmability within the GPU. Figure 1-7 shows the vertex processing and frag-
ment processing stages in the pipeline of a programmable GPU.

Figure 1-7 shows more detail than Figure 1-3, but more important, it shows the vertex
and fragment processing broken out into programmable units. The programmable

o
Application
or Game
o APl
Coammands
3D APl
OpenGL
or Dir
CPU - GPU Boundary
GPU
Command &
Data Stream Assembled Pixal .
Vartex Index Palygons, Lines Location Pixel
Stream & Points Stream Updates
GPU I oy | Primitive | ooy Rosterization & | s Raster | ey
Front Assa Interpolation Operati Frome Bullsy
Pretransformed Transfarmed Rasterized Transfarmed
Vertices Vertices Pratransformed Fragments
Fragmenis
Programmable o Programmable
Vertex P::!mmt

Figure 1-7. The Programmable Graphics Pipeline

17

1.2 Vertices, Fragments, and the Graphics Pipeline

—p—

18

o

vertex processor is the hardware unit that runs your Cg vertex programs, whereas the

programmable fragment processor is the unit that runs your Cg fragment programs.

As explained in Section 1.2.2, GPU designs have evolved, and the vertex and fragment

processors within the GPU have transitioned from being configurable to being pro-

grammable. The descriptions in the next two sections present the critical functional

features of programmable vertex and fragment processors.

The Programmable Vertex Processor

Figure 1-8 shows a flow chart for a typical programmable vertex processor. The data-

flow model for vertex processing begins by loading each vertex’s attributes (such as

r Copy Vertex
3::"‘ b Auributes to
Input Regi

-+

. Read |
Input Fleglntanil I -------------- » Te:pnr:':\ru:l:;wm |

Temporary
Registers

Output
Registers | 77777

Vertex
Program Fetch & Decode
Instruction === Next Instruct
Memory

|

Verrex
Program
Inseruction
Loop

Map Input Values:
Swizzle, Negate,

Perform Instruction
Math/Operation
Write ﬁmauw oF
‘Output Register
with Maskil

Yes

Emit Output r‘;
Registers As nd
____________________ > Transformed -» Vert

Vertex

Figure 1-8. Programmable Vertex Processor Flow Chart

Chapter 1: Introduction

—p—

o

position, color, texture coordinates, and so on) into the vertex processor. The vertex
processor then repeatedly fetches the next instruction and executes it until the vertex
program terminates. Instructions access several distinct sets of registers banks that
contain vector values, such as position, normal, or color. The vertex attribute registers
are read-only and contain the application-specified set of attributes for the vertex. The
temporary registers can be read and written and are used for computing intermediate
results. The output result registers are write-only. The program is responsible for writ-
ing its results to these registers. When the vertex program terminates, the output result
registers contain the newly transformed vertex. After triangle setup and rasterization,
the interpolated values for each register are passed to the fragment processor.

Most vertex processing uses a limited palette of operations. Vector math operations on
floating-point vectors of two, three, or four components are necessary. These opera-
tions include add, multiply, multiply-add, dot product, minimum, and maximum.
Hardware support for vector negation and component-wise swizzling (the ability to
reorder vector components arbitrarily) generalizes these vector math instructions to
provide negation, subtraction, and cross products. Component-wise write masking
controls the output of all instructions. Combining reciprocal and reciprocal square
root operations with vector multiplication and dot products, respectively, enables
vector-by-scalar division and vector normalization. Exponential, logarithmic, and
trigonometric approximations facilitate lighting, fog, and geometric computations.
Specialized instructions can make lighting and attenuation functions easier to compute.

Further functionality, such as relative addressing of constants and flow-control support
for branching and looping, is also available in more recent programmable vertex
processors.

The Programmable Fragment Processor

Programmable fragment processors require many of the same math operations as pro-
grammable vertex processors do, but they also support texturing operations. Texturing
operations enable the processor to access a texture image using a set of texture coordi-
nates and then to return a filtered sample of the texture image.

Newer GPUs offer full support for floating-point values; older GPUs have more lim-
ited fixed-point data types. Even when floating-point operations are available, frag-
ment operations are often more efficient when using lower-precision data types. GPUs
must process so many fragments at once that arbitrary branching is not available in
current GPU generations, but this is likely to change over time as hardware evolves.

19
1.2 Vertices, Fragments, and the Graphics Pipeline

—p—

20

Temporary
Registers

: Filter
femmmmmmmees P fexels Iﬁ

Write Temporary

Fragment
Primitive Program | | p Fetch &Decode
Interpalants Instruction Next Instructi
Memory
H
"
........ :.--_,_.,__,__“_“_“_“_“_.' Read Interpolants and/or
Temporary Reglsters
A
H
H Map Input Values: .
: Swizzle, Negate, Fragment
: Pragram
E Inseruction
: . Laap
: Compute Taxture Texture
H [PRp—— Address & Level-of Fetch
; - & Fetch Texels Yes Instruction?
H
" L
| Texture L
1 Images |
H o - Perform Instruction
i - Math/Operati
:
H
'
H
'
H
'

....... or Output Register

: with Masking
3
v
Qutput Emit Final End
Depth & Color | f===============mmemen > Fraomell = { Fragmen
utputs

Figure 1-9. Programmable Fragment Processor Flow Chart

Cg still allows you to write fragment programs that branch and iterate by simulating
such constructs with conditional assignment operations or loop unrolling.

Figure 1-9 shows the flow chart for a current programmable fragment processor. As
with a programmable vertex processor, the data flow involves executing a sequence of
instructions until the program terminates. Again, there is a set of input registers. How-
ever, rather than vertex attributes, the fragment processor’s read-only input registers
contain interpolated per-fragment parameters derived from the per-vertex parameters
of the fragment’s primitive. Read/write temporary registers store intermediate values.
Write operations to write-only output registers become the color and optionally the
new depth of the fragment. Fragment program instructions include texture fetches.

Chapter 1: Introduction

—p—

1.2.5

1.3

o

Cg Provides Vertex and Fragment Programmability

These two programmable processors in your GPU require you, the application pro-
grammer, to supply a program for each processor to execute. What Cg provides is a
language and a compiler that can translate your shading algorithm into a form that
your GPU’s hardware can execute. With Cg, rather than program at the level shown in
Figures 1-8 and 1-9, you can program in a high-level language very similar to C.

Cg’s Historical Development

Cg’s heritage comes from three sources, as shown in Figure 1-10. First, Cg bases its
syntax and semantics on the general-purpose C programming language. Second, Cg
incorporates many concepts from offline shading languages such as the RenderMan
Shading Language, as well as prior hardware shading languages developed by acade-
mia. Third, Cg bases its graphics functionality on the OpenGL and Direct3D pro-

gramming interfaces for real-time 3D.

General-Purpose Non-Real-Time
Programming Shading
Languages Languages
Specialized for Optimized for
GPUs Real-Time
o ke
&
High-Level
Language Support
Programmable
GPUs and
3D APIs

Figure 1-10. Sources of Cg’s Technology Heritage

21
1.3 Cg’s Historical Development

—p—

Cc
(AT&T, 197g
N

v | \

Objective-C \
(NeXT, 1 \
.

|

IRIS GL
ISGI, 1982)

RenderMan
(Pixar, 1988)

OpenGL
(ARB, 1992)

Java Reality Lab
(Sun, 1994) (RenderMorphics, 1
PixelFlow
Shading

General-purpose Languages

== e = = = e = = o= o= =

Language
(UNC, 1998

\

1
1
1
I
1
I
L .
1
|

Real-Time
Shading Language
{Stanford, 2001)

LY
A
Y Cg
L (NVIDIA, 2002) ‘

Graphics Application Programming Interfaces

Shading Languagas

Figure 1-11. Inspirations for Cg’s Development

Figure 1-11 shows the general-purpose programming languages, 3D application pro-
gramming interfaces, and shading languages that inspired Cg’s development.

Earlier, we mentioned how Cg leverages C’s syntax and semantics. Over the course of
this book, you will find that Cg mostly does what C programmers expect. Cg differs
from C in situations where either Cg’s specialization for GPUs or performance justifies

a change.

1.3.1

Microsoft and NVIDIA’s Collaboration to Develop Cg and HLSL
NVIDIA and Microsoft collaborated to develop the Cg language. Microsoft calls its

implementation High-Level Shading Language, or HLSL for short. HLSL and Cg are

22

Chapter 1: Introduction

—p—

1.3.2

o

the same language but reflect the different names each company uses to identify the
language and its underlying technology. HLSL is a part of Microsoft’s DirectX Graph-
ics, a component of the DirectX 9 multimedia framework. Direct3D is the 3D compo-
nent of Microsoft’s DirectX Graphics. Cg is independent of the 3D programming
interface and fully integrates with either Direct3D or OpenGL. A properly written Cg
application can be written once and then work with either OpenGL or Direct3D.

This flexibility means that NVIDIA’s Cg implementation provides a way to author
programs that work with both dominant 3D programming interfaces and whatever
operating system you choose. Cg works whether you choose Windows, Linux, Mac
OS X, a game console, or embedded 3D hardware as your 3D computing platform.
Cg programs work with hardware from multiple hardware vendors because Cg layers
cleanly upon either Direct3D or OpenGL. Cg programs work on programmable
GPUs from all the major graphics hardware vendors, such as 3Dlabs, AT1, Matrox,
and NVIDIA.

The multivendor, cross-API, and multiplatform nature of the Cg language makes it
the best choice when writing programs for programmable GPUs.

Noninteractive Shading Languages

The RenderMan Interface Standard describes the best-known shading language for
noninteractive shading. Pixar developed the language in the late 1980s to generate
high-quality computer animation with sophisticated shading for films and commer-
cials. Pixar has created a complete rendering system with its implementation of the
RenderMan Interface Standard, the offline renderer PRMan (PhotoRealistic Render-
Man). The RenderMan Shading Language is just one component of this system.

Shade Trees

The inspiration for the RenderMan Shading Language came from an earlier idea
called shade trees. Rob Cook, then at Lucasfilm Ltd., which later spun off Pixar, pub-
lished a SIGGRAPH paper about shade trees in 1984. A shade tree organizes various
shading operations as nodes within a tree structure. Figure 1-12 shows a shade tree for
rendering a copper surface. The leaf nodes are data inputs to the shade tree. The non-
leaf nodes represent simple shading operations. During the process of rendering, the
renderer evaluates the shade tree associated with a given surface to determine the color
of the surface in the rendered image. To evaluate a shade tree, a renderer performs the

23
1.3 Cg’s Historical Development

—p—

24

o

Final Color |
> \Ts -+]
Copper Color I

N @ 4 <
| I |
Weight of Ambient I Weight of Spe
Ambient Specular | |

cular
Components Components T

NormalJ Viewer

g3
J

Figure 1-12. A Shade Tree Example, Based on Rob Cook’s Original SIGGRAPH Paper

shading operation associated with the topmost node in the shade tree. However, to
evaluate a given node, the renderer must first evaluate the node’s child nodes. This rule
is applied recursively to evaluate the shade tree fully. The result of a shade tree evalua-
tion at a given point on a surface is the color of that point.

Shade trees grew out of the realization that a single predefined shading model would
never be sufficient for all the objects and scenes one might want to render.

Shade tree diagrams are great for visualizing a data flow of shading operations. How-
ever, if the shade trees are complex, their diagrams become unwieldy. Researchers at
Pixar and elsewhere recognized that each shade tree is a limited kind of program. This
realization provided the impetus for a new kind of programming language known as a
shading language.

The RenderMan Shading Language

The RenderMan Shading Language grew out of shade trees and the realization that
open-ended control of the appearance of rendered surfaces in the pursuit of photoreal-
ism requires programmability.

Chapter 1: Introduction

—p—

o

Today most offline renderers used in actual production have some type of support for
a shading language. The RenderMan Shading Language is the most established and
best known for offline rendering, and it was significantly overhauled and extended in
the late 1990s.

Hardware-Amenable Shading Languages

A hardware implementation of an algorithm is most efficient when the task decom-
poses into a long sequence of stages in which each stage’s communication is limited to
its prior stage and its subsequent stage (that is, when it can be pipelined).

The vertex-based and fragment-based pipeline described in Section 1.2 is extremely
amenable to hardware implementation. However, the Reyes algorithm used by Photo-
Realistic RenderMan is not very suitable for efficient hardware implementation, pri-
marily due to its higher-level geometry handling. Contemporary GPUs rely
completely on a graphics pipeline based on vertices and fragments.

Researchers at the University of North Carolina (UNC) began investigating program-
mable graphics hardware in the mid-1990s, when UNC was developing a new pro-
grammable graphics hardware architecture called PixelFlow. This project fostered a
new line of computer graphics research into hardware-amenable shading languages by
Marc Olano and others at UNC. Unfortunately, PixelFlow was too expensive and
failed commercially.

Subsequently, researchers at Silicon Graphics worked on a system to translate shaders
into multiple passes of OpenGL rendering. Although the targeted OpenGL hardware
was not programmable in the way GPUs are today, the OpenGL Shader system or-
chestrates numerous rendering passes to achieve a shader’s intended effect.

Researchers at Stanford University, including Kekoa Proudfoot, Bill Mark, Svetoslav
Tzvetkov, and Pat Hanrahan, began building a shading language designed specifically
for second-generation and third-generation GPUs. This language, known as the Stan-
ford Real-Time Shading Language (RTSL), could compile shaders written in RTSL

into one or more OpenGL rendering passes.

The research at Stanford inspired NVIDIA’s own effort to develop a commercial-
quality hardware-amenable shading language. Bill Mark joined NVIDIA in 2001 to
lead the effort to define and implement the shading language we now call Cg. Dur-
ing this time, NVIDIA collaborated with Microsoft to agree on a common language
syntax and feature set.

1.3 Cg’s Historical Development

—p—

26

1.3.3

1.4

1.4.1

o

Programming Interfaces for 3D Graphics

The third influence on Cg was the pair of standard 3D programming interfaces,
OpenGL and Direct3D. The influence of these programming interfaces on Cg is on-
going, as is explained in the next section.

The Cg Environment

Cg is just one component of the overall software and hardware infrastructure for ren-
dering complex 3D scenes with programmable GPUs at real-time rates. This section
explains how Cg interacts with actual 3D applications and games.

Standard 3D Programming Interfaces: OpenGL and Direct3D
In the old days of 3D graphics on a PC (before there were GPUs), the CPU handled

all the vertex transformation and pixel-pushing tasks required to render a 3D scene.
The graphics hardware provided only the buffer of pixels that the hardware displayed
to the screen. Programmers had to implement their own 3D graphics rendering algo-
rithms in software. In a sense, everything about vertex and fragment processing back
then was completely programmable. Unfortunately, the CPU was too slow to produce
compelling 3D effects.

These days, 3D applications no longer implement their own 3D rendering algorithms
using the CPU; rather, they rely on either OpenGL or Direct3D, the two standard 3D
programming interfaces, to communicate rendering commands to the GPU.

OpenGL

In the early 1990s, Silicon Graphics developed OpenGL in coordination with an or-
ganization called the OpenGL Architecture Review Board (ARB), which comprised all
the major computer graphics system vendors. Originally, OpenGL ran only on power-
ful UNIX graphics workstations. Microsoft, a founding member of the ARB, then
implemented OpenGL as a way to support 3D graphics for its Windows N'T operat-
ing system. Microsoft later added OpenGL support to Windows 95 and all of Mi-
crosoft’s desktop operating systems.

Chapter 1: Introduction

—p—

o

OpenGL is not limited to a single operating or windowing system. In addition to
supporting UNIX workstations and Windows PCs, OpenGL is supported by Apple
for its Macintosh personal computers. Linux users can use either the Mesa open-
source implementation of OpenGL or a hardware-accelerated implementation such as
NVIDIA’s OpenGL driver for Linux. This flexibility makes OpenGL the industry’s

best cross-platform programming interface for 3D graphics.

Over the last decade, OpenGL has evolved along with graphics hardware. OpenGL is
extensible, meaning that OpenGL implementers can add new functionality to
OpenGL in an incremental way. Today, scores of OpenGL extensions provide access
to all the latest GPU features. This includes ARB-standardized extensions for vertex
and fragment programmability. As extensions are established, they are often rolled into
the core OpenGL standard so that the standard as a whole advances. At the time of
this writing, the current version of OpenGL is 1.4. Ongoing work to evolve OpenGL
is underway in various OpenGL ARB working groups. This work includes both as-
sembly-level and high-level programmable interfaces. Because Cg operates as a layer
above such interfaces, it will continue to function with future revisions of OpenGL in
a compatible manner.

Direct3D

Microsoft began developing the Direct3D programming interface about 1995 as part
of its DirectX multimedia initiative. Direct3D is one of the programming interfaces
that make up DirectX. Microsoft introduced DirectX and Direct3D to jump-start the
consumer market for 3D graphics, particularly gaming, on Windows PCs. Microsoft’s
Xbox game console also supports Direct3D. Direct3D is the most popular graphics
APT for games on Windows, due to its history of closely matching the capabilities of
available graphics hardware.

Every year or so, Microsoft has updated DirectX, including Direct3D, to keep up with
the rapid pace of PC hardware innovation. The current version of DirectX at the time
of this writing is DirectX 9, which includes HLSL, Microsoft’s implementation of the
same language syntax and constructs found in Cg.

3D Programming Interface Détente

A few years ago, OpenGL and Direct3D competed to see which programming inter-
face would dominate, particularly in the domain of Windows PCs. The competition
continues to be good for both programming interfaces, and each has improved in

27
1.4 The Cg Environment

—p—

28

1.4.2

o

performance, quality, and functionality. In the area of GPU programmability that Cg
addresses, both programming interfaces have comparable capabilities. This is because
both OpenGL and Direct3D run on the same GPU hardware and the graphics hard-
ware determines the available functionality and performance. OpenGL has a slight
advantage in functionality because hardware vendors are better able to expose their
entire feature set through OpenGL, though vendor-specific extensions do add some
complexity for developers.

Most software developers now choose a 3D programming interface based on program-
mer preference, history, and their target market and hardware platform, rather than on
technical grounds.

Cg supports either programming interface. You can write Cg programs so that they
work with either the OpenGL or Direct3D programming interface. This is a huge
boon for 3D content developers. They can pair their 3D content with programs writ-
ten in Cg and then render the content no matter what programming interface the
final application uses for 3D rendering,.

The Cg Compiler and Runtime

No GPU can execute Cg programs directly from their textual form. A process known
as compilation must translate Cg programs into a form that the GPU can execute.
The Cg compiler first translates your Cg program into a form accepted by the applica-
tion’s choice of 3D programming interface, either OpenGL or Direct3D. Then your
application transfers the OpenGL or Direct3D translation of your Cg program to the
GPU using the appropriate OpenGL or Direct3D commands. The OpenGL or
Direct3D driver performs the final translation into the hardware-executable form your
GPU requires.

The details of this translation depend on the combined capabilities of the GPU and
3D programming interface. How a Cg program compiles its intermediate OpenGL or
Direct3D form depends on the type and generation of GPU in your computer. It may
be that your GPU is not capable of supporting a particular valid Cg program because
of limitations of the GPU itself. For example, your Cg fragment program will not
compile if your program accesses more texture units than your target GPU supports.

Chapter 1: Introduction

—p—

o

Support for Dynamic Compilation

When you compile a program with a conventional programming language such as C or
C++, compilation is an offline process. Your compiler compiles the program into an
executable that runs directly on the CPU. Once compiled, your program does not need
to be recompiled, unless you change the program code. We call this static compilation.

Cg is different because it encourages dynamic compilation, although static compilation
is also supported. The Cg compiler is not a separate program but part of a library
known as the Cg runtime. 3D applications and games using Cg programs must link
with the Cg runtime. Applications using Cg then call Cg runtime routines, all pre-
fixed with the letters eg, to compile and manipulate Cg programs. Dynamic compila-
tion allows Cg programs to be optimized for the particular model of GPU installed in
the user’s machine.

CgGL and CgD3D, the 3D-API-Specific Cg Libraries

In addition to the core Cg runtime, Cg provides two closely related libraries. If your
application uses OpenGL, you will use the CgGL library to invoke the appropriate
OpenGL routines to pass your translated Cg program to the OpenGL driver. Like-
wise, if your application uses Direct3D, you will use the CgD3D library to invoke the
appropriate Direct3D routines to pass your translated Cg program to the Direct3D
driver. Normally, you would use either the CgGL or the CgD3D library, but not both,
because most applications use either OpenGL or Direct3D, not both.

Compared with the core Cg runtime library that contains the Cg compiler, the CgGL
and CgD3D libraries are relatively small. Their job is to make the appropriate
OpenGL or Direct3D calls for you to configure Cg programs for execution. These
calls transfer a translated Cg program to the appropriate driver that will further trans-
late the program into a form your GPU can execute. For the most part, the CgGL and
CgD3D libraries have similar routines. The routines in the CgGL library begin with
cgGL; the routines in the CgD3D library begin with cgb3D.

How the Cg Runtime Fits into Your Application

Figure 1-13 shows how a typical 3D application uses the Cg libraries. If you are a
programmer, you will want to learn more about the Cg runtime and the specific li-
brary for the 3D API your application uses to render 3D graphics. Most of this book
focuses on the Cg language itself and on how to write Cg programs, but Appendix B
has more information about the Cg runtime library.

29
1.4 The Cg Environment

—p—

30

1.4.3

o

3D Application or Game ‘
4 | Direct3D OpenGL
Cg Compiler Cg Runtime Cg Runtime

Core Cg Runtime

3D API: OpenGL or Direct3D ‘

|

Graphics Processing Unit (GPU) ‘

Figure 1-13. How Cg Fits into a Standard Cg Application

The CgFX Toolkit and File Format

Cg programs need 3D models, textures, and other data to operate on. A Cg program
without any associated data is useless. Cg programs and data also require the correct
3D programming interface configuration and state. It is often helpful to have a way to
bundle all the information required to render a 3D model, including its associated Cg
program.

What CgFX Provides

CgFX is a standardized file format for representing complete effects and appearances.
As they did with Cg, Microsoft and NVIDIA collaborated to develop the CgFX for-
mat. CgFX files are text-based, with a syntax that is a superset of Cgs, and may con-
tain any number of Cg programs. The . £x suffix identifies CgFX files. A CgFX file
describes the complete render state for a particular effect: multiple passes, texture
states, and any number of individual vertex and fragment programs may be defined to
create a complete appearance or effect. An accompanying development toolkit is pro-
vided for using and parsing CgFX files. The toolkit exposes user-interface hooks to
host applications, so that CgFX-aware applications can automatically supply meaning-
ful controls and semantics to users and developers alike.

Chapter 1: Introduction

—p—

o

Cg programs describe the vertex or fragment processing that takes place in a single
rendering pass, but some complex shading algorithms require multiple rendering
passes. CgFX offers a format to encode complex multipass effects, including designat-
ing which Cg program is used for each rendering pass.

More specifically, CgFX supports three additional capabilities beyond what the core
Cg language supports:

1. CgFX provides a mechanism for specifying multiple rendering passes and optional
multiple implementations for a single effect.

2. CgFX allows you to specify nonprogrammable rendering states, such as alpha-test
modes and texture-filtering. The settings for these render states may take the form
of simple expressions, which are evaluated on the CPU when the effect is initialized.

3. CgFX allows annotations to be added to shaders and shader parameters. These
annotations provide additional information to applications, including content
creation applications. For example, an annotation can specify the allowed range of
values for a shader parameter.

Multiple Shader Instancing

The CgFX file format encapsulates multiple implementations of Cg programs for a
given shader. This means you can have one Cg shader program written for a third-
generation or fourth-generation GPU, while also including a simpler program that
supports a less capable, second-generation GPU. An application loading the CgFX file
can determine at runtime the most appropriate shader implementation to use based
on the computer’s available GPU.

Multiple instancing of Cg programs with CgFX is one way to address the functional
variations in GPUs of different generations or different hardware vendors. Multiple
instancing also lets you develop a Cg program specialized for a particular 3D API—for
example, if OpenGL exposes extra functionality through an extension. Cg programs
specialized for Direct3D, standard OpenGL, or OpenGL with extensions can all be
contained in a single CgFX file.

CgFX and Digital Content Creation

The CgFX Toolkit consists of the CgFX compiler, which supports the full CgFX
syntax; the CgFX runtime API, for loading and manipulating CgFX files; and plug-
in modules for major digital content creation (DCC) applications such as

31
1.4 The Cg Environment

—p—

32

o

Alias|Wavefront's Maya and Discreet’s 3ds max. Figure 1-14 shows these applications
making use of CgFX. Softimage|XSI 3.0 provides direct support for Cg compilation
in its Render Tree.

Prior to CgFX, there was no standard way for a DCC application to export 3D con-
tent with all the associated shading knowledge necessary to render the content in real
time. Now the major DCC applications use CgFX in their content creation process
and support the CgFX file format. This means that CgFX can significantly improve
the artistic workflow from DCC applications to real-time games and other 3D appli-
cations. Using CgFX, artists can view and tweak Cg shaders and associated 3D con-
tent to see, from within the DCC tool of their choice, how their work will appear in a
3D game or application.

discreet” SOFTIMAGE

T —————

Figure 1-14. Digital Content Creation Applications That Use Cg and CgFX

Chapter 1: Introduction

—p—

o

How CgFX Fits into Your Application

Figure 1-15 shows how a CgFX file containing multiple instanced shaders is used by
an application in conjunction with the Cg runtime and your choice of rendering API.
Most of this book focuses on the Cg language itself and on how to write Cg programs,
rather than CgFX, but see Appendix C for more information about the CgFX file
format and its associated runtime API.

Onward to the Tutorial

Having finished this introduction to the Cg programming language, you are now
ready to take on the tutorial chapters, which will teach you how to write Cg programs.

. | Other...
CgFX Fil
graie | PS2 Shader
« GUI Xbox Shader

* Parameters
* Annotations

[DirectX 8 Shad
Cg Shader

C

Offline Compile I_ Comg

Runtime
Compile

DirectX OpenGL

Figure 1-15. How CgFX Fits into a Standard Application

33
1.4 The Cg Environment

—p—

34

1.5

1.6

Exercises

The exercises at the end of each chapter help you review your knowledge and develop
practical programming skills.

1. Answer this: Name two standard 3D programming interfaces for which you can
compile Cg programs. What operating systems does each programming interface
support?

2. Answer this: What are the major stages of the graphics pipeline? In what order are
the stages arranged?

3. Answer this: Where do vertex and fragment programs fit into the pipeline?

4. Answer this: What is a vertex? What is a fragment? Distinguish a fragment from a
pixel.
5. Try this yourself: We haven’t begun writing Cg programs yet (we'll get there soon

enough in the next chapter), so take a break and watch a good feature-length com-
puter graphics animation such as Monsters, Inc.

Further Reading

Cg builds on a host of concepts in computer language design, computer hardware
design, and computer graphics. Doing justice to all these contributions in the context
of this tutorial is not always practical. What we attempt in the “Further Reading”
section at the end of each chapter is to offer you pointers to learn more about the
contributions that underlie the topics in each chapter.

There are plenty of books on C. The C Programming Language, Third Edition (Pren-
tice Hall, 2000), by Brian Kernighan and Dennis Ritchie, is a classic; the authors
invented the C language. Cg includes concepts from both C and C++. There now may
actually be more books about C++ than about C. The classic C++ book is 7he C++
Programming Language, Third Edition (Addison-Wesley, 2000), by Bjarne Stroustrup,
who invented the language.

To learn more about the RenderMan Shading Language, read 7he RenderMan Com-
panion: A Programmers Guide to Realistic Computer Graphics (Addison-Wesley, 1989),
by Steve Upstill. Pat Hanrahan and Jim Lawson published a SIGGRAPH paper about

Chapter 1: Introduction

—p—

o

RenderMan called “A Language for Shading and Lighting Calculations” (ACM Press)
in 1990.

Robert Cook’s 1984 SIGGRAPH paper titled “Shade Trees” (ACM Press) motivated
the development of RenderMan.

The development of programmable graphics hardware and its associated languages has
been an active and fruitful research area for almost a decade. Anselmo Lastra, Steven
Molnar, Marc Olano, and Yulan Wang at UNC published an early research paper in
1995 titled “Real-Time Programmable Shading” (ACM Press). Researchers at UNC
also published several papers about their programmable PixelFlow graphics architec-
ture. Marc Olano and Anselmo Lastra published a SIGGRAPH paper titled “A Shad-
ing Language on Graphics Hardware: The PixelFlow Shading System” (ACM Press) in
1998.

Kekoa Proudfoot, Bill Mark, Svetoslav Tzvetkov, and Pat Hanrahan published a SIG-
GRAPH paper in 2001 titled “A Real-Time Procedural Shading System for Program-
mable Graphics Hardware” (ACM Press) that describes a GPU-oriented shading
language developed at Stanford.

Real-Time Rendering, Second Edition (A. K. Peters, 2002), written by Eric Haines and
Tomas Akenine-Méller, is an excellent resource for further information about graphics
hardware and interactive techniques.

The OpenGL Graphics System: A Specification documents the OpenGL 3D program-
ming interface. The best tutorial for learning OpenGL programming is the OpenGL
Programming Guide: The Official Guide to Learning OpenGL, Third Edition (Addison-
Wesley, 1999), by Mason Woo, Jackie Neider, Tom Davis, and Dave Shreiner. The
www.opengl.org Web site serves up much more information about OpenGL.

Documentation for the Direct3D programming interface is available from Microsoft’s
msdn.microsoft.com Web site.

NVIDIA provides further information about the Cg runtime, CgFX, and Cg itself on
its Developer Web site at developer.nvidia.com/Cg.

35
1.6 Further Reading

