
Parallel Computing with
CUDA

Agenda

Introduction & Motivation
The Myth of GPU Computing
CUDA Programming Model
Parallel Algorithms in CUDA
CUDA Tools and Resources
Sample Applications

Introduction & Motivation

© NVIDIA Corporation 2008

Future Science & Engineering
Breakthroughs Hinge on Computing

Computational Computational
ChemistryChemistry

Computational Computational
BiologyBiology

Computational Computational
FinanceFinance

Image Image
ProcessingProcessing

Computational Computational
GeoscienceGeoscience

Computational Computational
MedicineMedicine

Computational Computational
ModelingModeling

Computational Computational
PhysicsPhysics

Faster is not “Just faster”

2-3x “Just faster”

Do a little more, wait a little less

Doesn’t change how you work

“Significant”

Worth upgrading

5-10x

Worth rewriting (parts of) your application

“Fundamentally Different”

Worth considering a new platform

Worth re-architecting your application

Makes new applications possible

Drives down “time to discovery”

Creates fundamental changes in science

100x+

CPU has hit a wall

Even 40% increasing on performance is considered
an achievement!

Clock speed is stuck at 3GHz for years
No matter how the cache is designed, it will never
be large enough
Adding more cores makes programming more
difficult than ever. The magical compiler for multi-
threading only exists on paper

Why GPU?

GPUs have evolved into highly parallel machines
Increasing performance much faster rate than CPU
Already provide 100s of cores
2x more core means 2x more performance
Fully programmable in C

NO graphics programming knowledge needed

Lots of compute power and memory bandwidth
Widely available

Over 100M CUDA-capable GPUs shipped as of 2008

GPUs enable parallel computing for the masses!

Parallel Computing on GPU

GPUs are massively multithreaded manycore chips
NVIDIA GPU products have up to 240 scalar processors
Over 23,000 concurrent threads in flight
1 TFLOP of performance (Tesla)

Enabling new science and engineering
By drastically reducing time to discovery
Engineering design cycles: from days to minutes, weeks to days

Enabling new computer science
By reinvigorating research in parallel algorithms, programming models,
architecture, compilers, and languages

The complexity of the problem is hidden
by the simplicity of the solution.

CUDA Use Cases

Isotropic
turbulence

simulation in
Matlab

Transcoding
HD H.264 video

stream

Ionic placement
for molecular

dynamics

Volumetric white
matter

visualization

Ultrasound
imaging for

cancer

Astrophysics
n-body

simulation

Financial
simulation of
LIBOR Model

String matching
for gene

sequences

Molecular
dynamics

M-script API
for Linear
Algebra

The Myth of GPU Computing

Myth of GPU Computing

GPUs layer normal programs on top of graphics

GPU architectures are
Very wide (1000s) SIMD machines
…on which branching is impossible or prohibitive
…with 4-wide vector registers

GPUs are power-inefficient

GPUs don’t do real floating point

Myth of GPU Computing

GPUs layer normal programs on top of graphics
No: CUDA compiles directly into the hardware

GPU architectures are
Very wide (1000s) SIMD machines
…on which branching is impossible or prohibitive
…with 4-wide vector registers

GPUs are power-inefficient

GPUs don’t do real floating point

Myth of GPU Computing

GPUs layer normal programs on top of graphics

GPU architectures are
Very wide (1000s) SIMD machines No, warps are 32-wide
…on which branching is impossible or prohibitive
…with 4-wide vector registers

GPUs are power-inefficient

GPUs don’t do real floating point

Myth of GPU Computing

GPUs layer normal programs on top of graphics

GPU architectures are
Very wide (1000s) SIMD machines
…on which branching is impossible or prohibitive Nope
…with 4-wide vector registers

GPUs are power-inefficient

GPUs don’t do real floating point

Myth of GPU Computing

GPUs layer normal programs on top of graphics

GPU architectures are
Very wide (1000s) SIMD machines
…on which branching is impossible or prohibitive
…with 4-wide vector registers No. All are scalars.

GPUs are power-inefficient

GPUs don’t do real floating point

Myth of GPU Computing

GPUs layer normal programs on top of graphics

GPU architectures are
Very wide (1000s) SIMD machines
…on which branching is impossible or prohibitive
…with 4-wide vector registers

GPUs are power-inefficient
No. 4x ~ 10x perf/watt advantage
GPUs don’t do real floating point

Double Precision Floating Point

G80 SSE IBM Altivec Cell SPE

Precision IEEE 754 IEEE 754 IEEE 754 IEEE 754

Rounding modes for
FADD and FMUL

Round to nearest and
round to zero

All 4 IEEE, round to
nearest, zero, inf, -inf Round to nearest only Round to zero/truncate

only

Denormal handling Flush to zero Supported,
1000’s of cycles

Supported,
1000’s of cycles Flush to zero

NaN support Yes Yes Yes No

Overflow and Infinity
support

Yes, only clamps to
max norm Yes Yes No, infinity

Flags No Yes Yes Some

Square root Software only Hardware Software only Software only

Division Software only Hardware Software only Software only

Reciprocal estimate
accuracy 24 bit 12 bit 12 bit 12 bit

Reciprocal sqrt
estimate accuracy 23 bit 12 bit 12 bit 12 bit

log2(x) and 2^x
estimates accuracy 23 bit No 12 bit No

GPU Single Floating Point Features

Do GPUs do real IEEE 754 FP?

G8x/GT200 GPU FP is IEEE 752
Comparable to other processors
More precise / usable in some ways
Less precise in other ways

GPU FP getting better every generation
Double precision supported in GT200
Goal: best of class in by 2009

Myth of GPU Computing

GPUs layer normal programs on top of graphics

GPU architectures are
Very wide (1000s) SIMD machines
…on which branching is impossible or prohibitive
…with 4-wide vector registers

GPUs are power-inefficient

GPUs don’t do real floating point

CUDA Programming Model

CUDA Goal: Easy to Program

Strategies:
Let programmers focus on parallel algorithms

not mechanics of a parallel programming language
Use C/C++ with minimal extensions

Enable heterogeneous systems (i.e., CPU+GPU)
CPU & GPU are separate devices with separate DRAMs

Simple parallel abstractions
Simple barrier synchronization
Shared memory semantics
Hardware-managed hierarchy of threads

Goal: Performance per millimeter

For GPUs, performance == throughput

Strategy: hide latency with computation not cache
Heavy multithreading

Implication: need many threads to hide latency
Occupancy – typically need 128 threads/SM minimum
Multiple thread blocks/SM good to minimize effect of
barriers

Strategy: Single Instruction Multiple Thread (SIMT)
Balances performance with ease of programming

CUDA Programming Model

Parallel code (kernel) is launched and executed on a
device by many threads
Threads are grouped into thread blocks

Synchronize their execution
Communicate via shared memory

Parallel code is written for a thread
Each thread is free to execute a unique code path
Built-in thread and block ID variables

CUDA threads vs CPU threads
CUDA thread switching is free
CUDA uses many threads per core

IDs and Dimensions

Threads:
3D IDs, unique within a block

Blocks:
2D IDs, unique within a grid

Dimensions set at launch time
Can be unique for each section

Built-in variables:
threadIdx, blockIdx
blockDim, gridDim

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Block (1, 1)

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 1)

Thread
(4, 1)

Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

Thread
(3, 2)

Thread
(4, 2)

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(3, 0)

Thread
(4, 0)

Parallel Kernel
KernelA (args);

Parallel Kernel
KernelB (args);

Serial Code

. . .

. . .

Serial Code

Device

Device

Host

Host

Heterogeneous Programming

CUDA = serial program with parallel kernels, all in C
Serial C code executes in a host thread (i.e. CPU thread)
Parallel kernel C code executes in many device threads
across multiple processing elements (i.e. GPU threads)

Kernel = Many Concurrent Threads

One kernel is executed at a time on the device
Many threads execute each kernel

Each thread has it’s own program counter, variables
(registers), processor state, etc.
Threads work different data based on its threadID

0 1 2 3 4 5 6 7

…
float x = input[];
float y = func(x);
output[
…

threadID

threadID] = y;

threadID

Hierarchy of Concurrent Threads

Thread block = virtualized multiprocessor
Kernel = grid of thread blocks

…
float x =
input[threadID];
float y = func(x);
output[threadID] = y;
…

threadID

Thread Block 0

…
…
float x =
input[threadID];
float y = func(x);
output[threadID] = y;
…

Thread Block 1

…
float x =
input[threadID];
float y = func(x);
output[threadID] = y;
…

Thread Block N - 1
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Threads in the same block can be synchronized with barriers
scratch[threadID] = begin[threadID];
__syncthreads();
int left = scratch[threadID - 1];

Threads
wait at the barrier
until all threads

in the same block
reach the barrier

Example: Increment Array Elements

Increment N-element vector a by scalar b

Let’s assume N=16, blockDim=4 -> 4 blocks

blockIdx.x=0
blockDim.x=4
threadIdx.x=0,1,2,3
idx=0,1,2,3

blockIdx.x=1
blockDim.x=4
threadIdx.x=0,1,2,3
idx=4,5,6,7

blockIdx.x=2
blockDim.x=4
threadIdx.x=0,1,2,3
idx=8,9,10,11

blockIdx.x=3
blockDim.x=4
threadIdx.x=0,1,2,3
idx=12,13,14,15

int idx = blockDim.x * blockId.x + threadIdx.x;

Example: Increment Array Elements

CPU program CUDA program

void increment_cpu(float *a, float b, int N)
{

for (int idx = 0; idx<N; idx++)
a[idx] = a[idx] + b;

}

void main()
{

.....
increment_cpu(a, b, 16);

}

__global__ void increment_gpu(float *a, float b, int N)
{

int idx = blockIdx.x * blockDim.x + threadIdx.x;
a[idx] = a[idx] + b;

}

void main()
{

…..
increment_gpu<<< 4, 4 >>>(a, b, 16);

}

Scalability: Make Blocks
Independent

Thread blocks can run in any order
Concurrently or sequentially
Hardware does not synchronize between blocks

This independence gives scalability:
A kernel scales across any number of parallel cores

Scalability

Memory Model of
Threads and Thread Blocks

Thread

Per-thread
Local Memory

Block

Per-block
Shared
Memory

Memory Model with
Each GPU

Kernel 0

. . .
Per-device

Global
Memory

. . .

Kernel 1

Sequential
Kernels

Memory Model of Host with
Multiple GPUs

Device 0
memory

Device 1
memory

Host memory cudaMemcpy()

Example: Host Code

// allocate host memory
unsigned int numBytes = N * sizeof(float)
float* h_A = (float*) malloc(numBytes);

// allocate device memory
float* d_A = 0;
cudaMalloc((void**)&d_A, numbytes);

// copy data from host to device
cudaMemcpy(d_A, h_A, numBytes, cudaMemcpyHostToDevice);

// execute the kernel
increment_gpu<<< N/blockSize, blockSize>>>(d_A, b, N);

// copy data from device back to host
cudaMemcpy(h_A, d_A, numBytes, cudaMemcpyDeviceToHost);

// free device memory
cudaFree(d_A);
free(h_A);

Compiling CUDA

Target code

VirtualVirtual

PhysicalPhysical

NVCC CPU Code

PTX Code

PTX to Target
Compiler

G80 … GTX

C CUDA
ApplicationAny source file containing

CUDA language
extensions must be
compiled with NVCC

NVCC separates code
running on the host from
code running on the device

Two-stage compilation:
1. Virtual ISA

Parallel Thread eXecution
2. Device-specific binary

object

Debugging Using the
Device Emulation Mode

An executable compiled in device emulation mode
(nvcc -deviceemu) runs completely on the host
using the CUDA runtime

No need of any device and CUDA driver
Each device thread is emulated with a host thread

When running in device emulation mode, one can:
Use host native debug support (breakpoints, inspection,
etc.)
Access any device-specific data from host code and vice-
versa
Call any host function from device code (e.g. printf) and
vice-versa
Detect deadlock situations caused by improper usage of
__syncthreads

Parallel Algorithms in CUDA

© NVIDIA Corporation 2008

Common Situations in Parallel Computation

Many parallel threads need to generate a single
result value

Reduction

Many parallel threads that need to partition data
Split

Many parallel threads and variable output per thread
Compact / Allocate

Parallel Reductions

Common Data Parallel Operation
Reduce vector to a single value
Operator: +, *, min/max, AND/OR
Tree-based implementation

4 7 5 9

11 14

25

3 1 7 0 4 1 6 3

Split Operation

FTFFTFFT

FFFFFTTT

36140713

31471603

Given an array of true and false elements (and
payloads)

Return an array with all true elements at the
beginning

Flag

Payload

Variable Output Per Thread (1):
Compact

3 7 4 1 3

3 0 7 0 4 1 0 3Remove null elements

Variable Output Per Thread (2):
Allocation

Allocate Variable Storage Per Thread

A

B

C D

E

F

G

2 1 0 3 2

H

Parallel Prefix Sum (Scan)

Given an array A = [a0, a1, …, an-1]
and a binary associative operator ⊕ with identity I,

scan(A) = [I, a0, (a0 ⊕ a1), …, (a0 ⊕ a1 ⊕ … ⊕ an-2)]

Example: if ⊕ is addition, then scan on the set

[3 1 7 0 4 1 6 3]
returns the set

[0 3 4 11 11 15 16 22]

Build the Sum Tree

3 1 7 0 4 1 6 3

Assume array is already in shared memory

Build the Sum Tree

3 1 7 0 4 1 6 3

3 4 7 7 4 5 6 9

Iteration 1, n/2 threads

Iterate log(n) times. Each thread adds value stride elements away to its own value

Each
corresponds to a
single thread.

Build the Sum Tree

3 1 7 0 4 1 6 3

3 4 7 7 4 5 6 9

3 4 7 11 4 5 6 14

Stride 1

Stride 2 Iteration 2, n/4 threads

Iterate log(n) times. Each thread adds value stride elements away to its own value

Each
corresponds to a
single thread.

Build the Sum Tree

3 1 7 0 4 1 6 3

3 4 7 7 4 5 6 9

3 4 7 11 4 5 6 14

3 4 7 11 4 5 6 25

Iterate log(n) times. Each thread adds value stride elements away to its own value.

Note that this algorithm operates in-place: no need for double buffering

Iteration log(n), 1 threadStride 4

Each
corresponds to a
single thread.

Stride 1

Stride 2

Zero the Last Element

3 4 7 11 4 5 6 0

We now have an array of partial sums. Since this is an exclusive scan,
set the last element to zero. It will propagate back to the first element.

Build Scan From Partial Sums

3 4 7 11 4 5 6 0

Build Scan From Partial Sums

3 4 7 0 4 5 6 11

3 4 7 11 4 5 6 0

Iterate log(n) times. Each thread adds value stride elements away to its own value,
and sets the value stride elements away to its own previous value.

Iteration 1
1 thread

Each
corresponds to a
single thread.

Build Scan From Partial Sums

3 4 7 0 4 5 6 11

3 4 7 11 4 5 6 0

Iterate log(n) times. Each thread adds value stride elements away to its own value,
and sets the value stride elements away to its own previous value.

Iteration 1
1 thread

Each
corresponds to a
single thread.

Build Scan From Partial Sums

3 4 7 0 4 5 6 11

3 4 7 11 4 5 6 0

3 0 7 4 4 11 6 16

Iterate log(n) times. Each thread adds value stride elements away to its own value,
and sets the value stride elements away to its own previous value.

Iteration 2
2 threads

Each
corresponds to a
single thread.

Build Scan From Partial Sums

3 4 7 0 4 5 6 11

3 4 7 11 4 5 6 0

3 0 7 4 4 11 6 16

0 3 4 11 11 15 16 22

Done! We now have a completed scan that we can write out to device memory.

Total steps: 2 * log(n).
Total work: 2 * (n-1) adds = O(n) Work Efficient!

Iteration log(n)
n/2 threads

CUDA Scan Performance

GPU vs.
CPU

20x

CUDA
vs.

OpenGL
7x

GeForce 8800 GTX, Intel Core2 Duo Extreme 2.93 GHz

Application: Stream Compaction

1M elements:
~0.6-1.3ms

16M
elements:
~8-20ms

Perf depends on #
elements
retained

Harris, M., S. Sengupta, and J.D. Owens. “Parallel Prefix Sum (Scan) in CUDA”.
GPU Gems 3

Application: Radix Sort

Sort 4M 32-bit
integers:

165ms

Perform split
operation on each
bit using scan

Can also sort each
block and merge

Slower due to
cost of merge

CUDA Tools and Resources

CUDA Programming Resources

CUDA Toolkit
Compiler and libraries
Free download for Windows, Linux, and Mac OSX

CUDA SDK
Code samples
Whitepapers

Instruction materials
Slides and audio
Parallel programming course at University of Illinois UC
Tutorials

Development tools
Libraries

GPU Tools

Profiler
Available now for all supported OSs
Command-line or GUI
Sampling signals on GPU for:

Memory access parameters
Execution (serialization, divergence)

Debugger
Demo shown at SC07
Runs on the GPU

Emulation mode
Compile and execute in emulation on CPU
Allows CPU-style debugging in GPU source

New Features

CUDA 2.02 Beta
Beta available on the NVIDIA website
Support for GeForce GTX 260 & 280:

Double precision
Integer atomic operations in shared memory

New features:
3D textures
Video Decoding Interface with Compute 1.1+ GPU
Improved and extended Direct3D interoperability

CUDA implementation on multi-core CPUs
Beta coming soon

Double Precision

NVIDIA GPUs (G8x and G9x) are single precision
IEEE 32-bit floating-point precision (“FP32”)
You can use double, but it gets demoted to float

NVIDIA GPUs (GT200) have double precision
IEEE 64-bit floating-point precision (“FP64”)
Double precision will be slower (more register pressure
and more cycles)

Be explicit about float and double!
Use double only where needed

Sample Applications

CUDA N-Body Simulation

10B interactions/s
16K bodies

44 FPS
x 20 FLOPS / interaction
x 16K2 interactions / frame

= 240 GFLOP/s on G80

DXT Compression

Offline
Runtime
Real-Time

256x256 RGB = 256 kB 128x128 RGB = 64 kB 256x256 DXT1 = 32 kB

Histogram

Representation of the distribution of colors in an
image
Applications:

Image Analysis
HDR Tone Mapping

Reinhard HDR Tonemapping operator HDR in Valve’s source engine

Histogram

CUDA Histogram is 300x faster than previous
GPGPU approaches

64 bins 256 bins

CUDA¹ 6500 MB/s 3676 MB/s

R2VB² 22.8 MB/s 42.6 MB/s

CPU³ 826 MB/s 1096 MB/s

¹ http://developer.download.nvidia.com/compute/cuda/sdk/website/samples.html#histogram64
² Efficient Histogram Generation Using Scattering on GPUs, T. Sheuermann, AMD Inc, I3D 2007
³ Intel Core 2 @ 2.9 GHz

http://developer.download.nvidia.com/compute/cuda/sdk/website/samples.html#histogram64

Game AI Breakdown

3 Main AI Computations to Accelerate
Spatial reasoning
Decision making
Path finding

Computation breakdown:
For “bot” simulation:

Spatial reasoning: 35%
Path finding: 65%

For crowd simulation:
Spatial reasoning: 5%
Path finding: 95%

Decision making always negligible

Biggest opportunity for GPU acceleration is path finding

A* Algorithm

Commonly used path finding algorithm
A* itself is not very parallel
Parallelism comes from computing many separate A*
paths in parallel

Many units moving simultaneously
Massive worlds with thousands of characters

CUDA Particle-Based Fluid

Grid-based fluids have limitations for use in games
Expensive, constrained to a box

Smoothed Particle Hydrodynamics (SPH) simulates
fluid as a collection of interacting particles

Localized collisions and pressure distribution
CUDA enables dynamic
construction of a uniform
grid data structure to
accelerate neighborhood
computations
32K particles at 60fps
GeForce 8800 GTX

GPU Fluid Simulation

CUDA and Physics: PhysX implemented in Cuda

Typical physics core simulation features
Rigid Body Dynamics
Universal Collision-Detection
Joints, Springs and Motors
Advanced ragdoll and vehicle constraints

High performance realism (beyond the basics)
Volumetric Fluids (SPH)

CCD with rigid bodies and static geometry
One- or two-way interaction with rigid bodies

Cloth and Soft Bodies
Attachment and CCD with rigid bodies and static geometry
Cloth self collision
Tearing
Derivatives: Sheet metal and vegetation

Where to go from here

Get CUDA Toolkit, SDK, and Programming Guide:
http://developer.nvidia.com/CUDA

CUDA works on all NVIDIA 8-Series GPUs (and later)
GeForce, Quadro, and Tesla

Talk about CUDA: http://forums.nvidia.com

http://developer.nvidia.com/CUDA

100M CUDA GPUs

Oil &
Gas

Finance Medical Biophysics Numerics Audio Video Imaging

Heterogeneous Computing

CPUCPUCPU
GPUGPUGPU60K CUDA Developers

Questions?

	Parallel Computing with CUDA
	Agenda
	Introduction & Motivation
	Future Science & Engineering �Breakthroughs Hinge on Computing
	CPU has hit a wall
	Why GPU?
	Parallel Computing on GPU
	CUDA Use Cases
	The Myth of GPU Computing
	Myth of GPU Computing
	Myth of GPU Computing
	Myth of GPU Computing
	Myth of GPU Computing
	Myth of GPU Computing
	Myth of GPU Computing
	Do GPUs do real IEEE 754 FP?
	Myth of GPU Computing
	CUDA Goal: Easy to Program
	Goal: Performance per millimeter
	CUDA Programming Model
	IDs and Dimensions
	Heterogeneous Programming
	Kernel = Many Concurrent Threads
	Hierarchy of Concurrent Threads
	Example: Increment Array Elements
	Example: Increment Array Elements
	Scalability: Make Blocks Independent
	Memory Model of�Threads and Thread Blocks
	Memory Model with�Each GPU
	Memory Model of Host with�Multiple GPUs
	Example: Host Code
	Compiling CUDA
	Debugging Using the�Device Emulation Mode
	Parallel Algorithms in CUDA
	Common Situations in Parallel Computation
	Parallel Reductions
	Split Operation
	Variable Output Per Thread (1): Compact
	Variable Output Per Thread (2): Allocation
	Parallel Prefix Sum (Scan)
	Build the Sum Tree
	Build the Sum Tree
	Build the Sum Tree
	Build the Sum Tree
	Zero the Last Element
	Build Scan From Partial Sums
	Build Scan From Partial Sums
	Build Scan From Partial Sums
	Build Scan From Partial Sums
	Build Scan From Partial Sums
	CUDA Scan Performance
	Application: Stream Compaction
	Application: Radix Sort
	CUDA Tools and Resources
	CUDA Programming Resources
	GPU Tools
	New Features
	Double Precision
	Sample Applications
	CUDA N-Body Simulation
	DXT Compression
	Histogram
	Game AI Breakdown
	A* Algorithm
	CUDA Particle-Based Fluid
	CUDA and Physics: PhysX implemented in Cuda
	Where to go from here
	Questions?

