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Future Science & Engineering 
Breakthroughs Hinge on Computing

Computational Computational 
ChemistryChemistry

Computational Computational 
BiologyBiology

Computational Computational 
FinanceFinance

Image Image 
ProcessingProcessing

Computational Computational 
GeoscienceGeoscience

Computational Computational 
MedicineMedicine

Computational Computational 
ModelingModeling

Computational Computational 
PhysicsPhysics



Faster is not “Just faster”



2-3x “Just faster”

Do a little more, wait a little less

Doesn’t change how you work



“Significant”

Worth upgrading

5-10x

Worth rewriting (parts of) your application



“Fundamentally Different”

Worth considering a new platform

Worth re-architecting your application

Makes new applications possible

Drives down “time to discovery”

Creates fundamental changes in science

100x+



CPU has hit a wall

Even 40% increasing on performance is considered 
an achievement!

Clock speed is stuck at 3GHz for years
No matter how the cache is designed, it will never 
be large enough
Adding more cores makes programming more 
difficult than ever. The magical compiler for multi-
threading only exists on paper



Why GPU?

GPUs have evolved into highly parallel machines
Increasing performance much faster rate than CPU
Already provide 100s of cores
2x more core means 2x more performance
Fully programmable in C

NO graphics programming knowledge needed

Lots of compute power and memory bandwidth
Widely available  

Over 100M CUDA-capable GPUs shipped as of 2008

GPUs enable parallel computing for the masses!



Parallel Computing on GPU

GPUs are massively multithreaded manycore chips
NVIDIA GPU products have up to 240 scalar processors
Over 23,000 concurrent threads in flight
1 TFLOP of performance (Tesla)

Enabling new science and engineering
By drastically reducing time to discovery 
Engineering design cycles: from days to minutes, weeks to days

Enabling new computer science
By reinvigorating research in parallel algorithms, programming models, 
architecture, compilers, and languages



The complexity of the problem is hidden 
by the simplicity of the solution.



CUDA Use Cases

Isotropic 
turbulence 

simulation in 
Matlab

Transcoding 
HD H.264 video 

stream

Ionic placement 
for molecular 

dynamics

Volumetric white 
matter 

visualization

Ultrasound 
imaging for 

cancer

Astrophysics 
n-body 

simulation

Financial 
simulation of 
LIBOR Model

String matching  
for gene 

sequences

Molecular 
dynamics

M-script API 
for Linear 
Algebra



The Myth of GPU Computing



Myth of GPU Computing

GPUs layer normal programs on top of graphics

GPU architectures are
Very wide (1000s) SIMD machines
…on which branching is impossible or prohibitive
…with 4-wide vector registers

GPUs are power-inefficient

GPUs don’t do real floating point



Myth of GPU Computing

GPUs layer normal programs on top of graphics
No: CUDA compiles directly into the hardware

GPU architectures are
Very wide (1000s) SIMD machines
…on which branching is impossible or prohibitive
…with 4-wide vector registers

GPUs are power-inefficient

GPUs don’t do real floating point



Myth of GPU Computing

GPUs layer normal programs on top of graphics

GPU architectures are
Very wide (1000s) SIMD machines    No, warps are 32-wide
…on which branching is impossible or prohibitive
…with 4-wide vector registers

GPUs are power-inefficient

GPUs don’t do real floating point



Myth of GPU Computing

GPUs layer normal programs on top of graphics

GPU architectures are
Very wide (1000s) SIMD machines
…on which branching is impossible or prohibitive   Nope
…with 4-wide vector registers

GPUs are power-inefficient

GPUs don’t do real floating point



Myth of GPU Computing

GPUs layer normal programs on top of graphics

GPU architectures are
Very wide (1000s) SIMD machines
…on which branching is impossible or prohibitive 
…with 4-wide vector registers   No. All are scalars.

GPUs are power-inefficient

GPUs don’t do real floating point



Myth of GPU Computing

GPUs layer normal programs on top of graphics

GPU architectures are
Very wide (1000s) SIMD machines
…on which branching is impossible or prohibitive 
…with 4-wide vector registers

GPUs are power-inefficient
No. 4x ~ 10x perf/watt advantage
GPUs don’t do real floating point



Double Precision Floating Point



G80 SSE IBM Altivec Cell SPE

Precision IEEE 754 IEEE 754 IEEE 754 IEEE 754

Rounding modes for 
FADD and FMUL

Round to nearest and 
round to zero

All 4 IEEE, round to 
nearest, zero, inf, -inf Round to nearest only Round to zero/truncate 

only

Denormal handling Flush to zero Supported,
1000’s of cycles

Supported,
1000’s of cycles Flush to zero

NaN support Yes Yes Yes No

Overflow and Infinity 
support

Yes, only clamps to 
max norm Yes Yes No, infinity

Flags No Yes Yes Some

Square root  Software only Hardware Software only Software only

Division  Software only Hardware Software only Software only

Reciprocal estimate 
accuracy 24 bit 12 bit 12 bit 12 bit

Reciprocal sqrt 
estimate accuracy 23 bit 12 bit 12 bit 12 bit

log2(x) and 2^x 
estimates accuracy 23 bit No 12 bit No

GPU Single Floating Point Features



Do GPUs do real IEEE 754 FP?

G8x/GT200 GPU FP is IEEE 752
Comparable to other processors
More precise / usable in some ways
Less precise in other ways

GPU FP getting better every generation
Double precision supported in GT200
Goal: best of class in by 2009



Myth of GPU Computing

GPUs layer normal programs on top of graphics

GPU architectures are
Very wide (1000s) SIMD machines
…on which branching is impossible or prohibitive 
…with 4-wide vector registers

GPUs are power-inefficient

GPUs don’t do real floating point



CUDA Programming Model



CUDA Goal: Easy to Program

Strategies:
Let programmers focus on parallel algorithms

not mechanics of a parallel programming language
Use C/C++ with minimal extensions

Enable heterogeneous systems (i.e., CPU+GPU)
CPU & GPU are separate devices with separate DRAMs

Simple parallel abstractions
Simple barrier synchronization
Shared memory semantics
Hardware-managed hierarchy of threads



Goal: Performance per millimeter

For GPUs, performance == throughput

Strategy: hide latency with computation not cache
Heavy multithreading

Implication: need many threads to hide latency
Occupancy – typically need 128 threads/SM minimum
Multiple thread blocks/SM good to minimize effect of 
barriers

Strategy: Single Instruction  Multiple Thread (SIMT)
Balances performance with ease of programming



CUDA Programming Model

Parallel code (kernel) is launched and executed on a 
device by many threads
Threads are grouped into thread blocks

Synchronize their execution
Communicate via shared memory

Parallel code is written for a thread
Each thread is free to execute a unique code path
Built-in thread and block ID variables

CUDA threads vs CPU threads
CUDA thread switching is free
CUDA uses many threads per core



IDs and Dimensions

Threads:
3D IDs, unique within a block

Blocks:
2D IDs, unique within a grid

Dimensions set at launch time
Can be unique for each section

Built-in variables:
threadIdx, blockIdx
blockDim, gridDim

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Block (1, 1)

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 1)

Thread
(4, 1)

Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

Thread
(3, 2)

Thread
(4, 2)

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(3, 0)

Thread
(4, 0)



Parallel Kernel
KernelA (args);

Parallel Kernel
KernelB (args);

Serial Code

. . .

. . .

Serial Code

Device

Device

Host

Host

Heterogeneous Programming

CUDA = serial program with parallel kernels, all in C
Serial C code executes in a host thread (i.e. CPU thread) 
Parallel kernel C code executes in many device threads 
across multiple processing elements (i.e. GPU threads) 



Kernel = Many Concurrent Threads

One kernel is executed at a time on the device
Many threads execute each kernel

Each thread has it’s own program counter, variables 
(registers), processor state, etc.
Threads work different data based on its threadID

0 1 2 3 4 5 6 7

…
float x = input[ ];
float y = func(x);
output[
…

threadID

threadID] = y;

threadID



Hierarchy of Concurrent Threads

Thread block = virtualized multiprocessor
Kernel = grid of thread blocks

…
float x = 
input[threadID];
float y = func(x);
output[threadID] = y;
…

threadID

Thread Block 0

…
…
float x = 
input[threadID];
float y = func(x);
output[threadID] = y;
…

Thread Block 1

…
float x = 
input[threadID];
float y = func(x);
output[threadID] = y;
…

Thread Block N - 1
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Threads in the same block can be synchronized with barriers
scratch[threadID] = begin[threadID];
__syncthreads();
int left = scratch[threadID - 1];

Threads
wait at the barrier
until all threads

in the same block
reach the barrier



Example: Increment Array Elements

Increment N-element vector a by scalar b

Let’s assume N=16, blockDim=4   -> 4 blocks

blockIdx.x=0
blockDim.x=4
threadIdx.x=0,1,2,3
idx=0,1,2,3

blockIdx.x=1
blockDim.x=4
threadIdx.x=0,1,2,3
idx=4,5,6,7

blockIdx.x=2
blockDim.x=4
threadIdx.x=0,1,2,3
idx=8,9,10,11

blockIdx.x=3
blockDim.x=4
threadIdx.x=0,1,2,3
idx=12,13,14,15

int idx = blockDim.x * blockId.x + threadIdx.x;



Example: Increment Array Elements

CPU program CUDA program

void increment_cpu(float *a, float b, int N)
{

for (int idx = 0; idx<N; idx++) 
a[idx] = a[idx] + b;

}

void main()
{

.....
increment_cpu(a, b, 16);

}

__global__ void increment_gpu(float *a, float b, int N)
{

int idx = blockIdx.x * blockDim.x + threadIdx.x;
a[idx] = a[idx] + b;

}

void main()
{

…..
increment_gpu<<< 4, 4 >>>(a, b, 16);

}



Scalability: Make Blocks 
Independent

Thread blocks can run in any order
Concurrently or sequentially
Hardware does not synchronize between blocks

This independence gives scalability:
A kernel scales across any number of parallel cores

Scalability



Memory Model of
Threads and Thread Blocks

Thread

Per-thread
Local Memory

Block

Per-block
Shared
Memory



Memory Model with
Each GPU

Kernel 0

. . .
Per-device

Global
Memory

. . .

Kernel 1

Sequential
Kernels



Memory Model of Host with
Multiple GPUs

Device 0
memory

Device 1
memory

Host memory cudaMemcpy()



Example: Host Code

// allocate host memory
unsigned int numBytes = N * sizeof(float)
float* h_A = (float*) malloc(numBytes);

// allocate device memory
float* d_A = 0;
cudaMalloc((void**)&d_A, numbytes);

// copy data from host to device
cudaMemcpy(d_A, h_A, numBytes, cudaMemcpyHostToDevice);

// execute the kernel
increment_gpu<<< N/blockSize, blockSize>>>(d_A, b, N);

// copy data from device back to host
cudaMemcpy(h_A, d_A, numBytes, cudaMemcpyDeviceToHost);

// free device memory
cudaFree(d_A);
free(h_A);



Compiling CUDA

Target code

VirtualVirtual

PhysicalPhysical

NVCC CPU Code

PTX Code

PTX to Target
Compiler

G80 … GTX

C CUDA
ApplicationAny source file containing 

CUDA language 
extensions must be 
compiled with NVCC

NVCC separates code 
running on the host from 
code running on the device

Two-stage compilation:
1. Virtual ISA

Parallel Thread eXecution
2. Device-specific binary 

object



Debugging Using the
Device Emulation Mode

An executable compiled in device emulation mode
(nvcc -deviceemu) runs completely on the host 
using the CUDA runtime

No need of any device and CUDA driver
Each device thread is emulated with a host thread

When running in device emulation mode, one can:
Use host native debug support (breakpoints, inspection, 
etc.)
Access any device-specific data from host code and vice-
versa
Call any host function from device code (e.g. printf) and 
vice-versa
Detect deadlock situations caused by improper usage of 
__syncthreads



Parallel Algorithms in CUDA
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Common Situations in Parallel Computation

Many parallel threads need to generate a single 
result value

Reduction

Many parallel threads that need to partition data
Split

Many parallel threads and variable output per thread
Compact / Allocate



Parallel Reductions

Common Data Parallel Operation
Reduce vector to a single value 
Operator: +, *, min/max, AND/OR
Tree-based implementation

4 7 5 9

11 14

25

3 1 7 0 4 1 6 3



Split Operation

FTFFTFFT

FFFFFTTT

36140713

31471603

Given an array of true and false elements (and 
payloads)

Return an array with all true elements at the 
beginning

Flag

Payload



Variable Output Per Thread (1): 
Compact

3 7 4 1 3

3 0 7 0 4 1 0 3Remove null elements



Variable Output Per Thread (2): 
Allocation

Allocate Variable Storage Per Thread

A

B

C D

E

F

G

2 1 0 3 2

H



Parallel Prefix Sum (Scan)

Given an array A = [a0, a1, …, an-1] 
and a binary associative operator ⊕ with identity I, 

scan(A) = [I, a0, (a0 ⊕ a1), …, (a0 ⊕ a1 ⊕ … ⊕ an-2)]

Example:  if ⊕ is addition, then scan on the set

[3 1 7 0 4 1 6 3]
returns the set 

[0 3 4 11 11 15 16 22]



Build the Sum Tree

3 1 7 0 4 1 6 3

Assume array is already in shared memory



Build the Sum Tree

3 1 7 0 4 1 6 3

3 4 7 7 4 5 6 9

Iteration 1, n/2 threads

Iterate log(n) times. Each thread adds value stride elements away to its own value

Each       
corresponds to a 
single thread.



Build the Sum Tree

3 1 7 0 4 1 6 3

3 4 7 7 4 5 6 9

3 4 7 11 4 5 6 14

Stride 1

Stride 2 Iteration 2, n/4 threads

Iterate log(n) times. Each thread adds value stride elements away to its own value

Each       
corresponds to a 
single thread.



Build the Sum Tree

3 1 7 0 4 1 6 3

3 4 7 7 4 5 6 9

3 4 7 11 4 5 6 14

3 4 7 11 4 5 6 25

Iterate log(n) times. Each thread adds value stride elements away to its own value.

Note that this algorithm operates in-place: no need for double buffering

Iteration log(n), 1 threadStride 4

Each       
corresponds to a 
single thread.

Stride 1

Stride 2



Zero the Last Element

3 4 7 11 4 5 6 0

We now have an array of partial sums.  Since this is an exclusive scan,
set the last element to zero.  It will propagate back to the first element.



Build Scan From Partial Sums

3 4 7 11 4 5 6 0



Build Scan From Partial Sums

3 4 7 0 4 5 6 11

3 4 7 11 4 5 6 0

Iterate log(n) times. Each thread adds value stride elements away to its own value,
and sets the value stride elements away to its own previous value.

Iteration 1
1 thread

Each       
corresponds to a 
single thread.



Build Scan From Partial Sums

3 4 7 0 4 5 6 11

3 4 7 11 4 5 6 0

Iterate log(n) times. Each thread adds value stride elements away to its own value,
and sets the value stride elements away to its own previous value.

Iteration 1
1 thread

Each       
corresponds to a 
single thread.



Build Scan From Partial Sums

3 4 7 0 4 5 6 11

3 4 7 11 4 5 6 0

3 0 7 4 4 11 6 16

Iterate log(n) times. Each thread adds value stride elements away to its own value,
and sets the value stride elements away to its own previous value.

Iteration 2 
2 threads

Each       
corresponds to a 
single thread.



Build Scan From Partial Sums

3 4 7 0 4 5 6 11

3 4 7 11 4 5 6 0

3 0 7 4 4 11 6 16

0 3 4 11 11 15 16 22

Done! We now have a completed scan that we can write out to device memory.

Total steps: 2 * log(n).  
Total work: 2 * (n-1) adds = O(n) Work Efficient!

Iteration log(n) 
n/2 threads



CUDA Scan Performance

GPU vs. 
CPU

20x

CUDA
vs.

OpenGL
7x

GeForce 8800 GTX, Intel Core2 Duo Extreme 2.93 GHz



Application: Stream Compaction

1M elements: 
~0.6-1.3ms

16M 
elements: 
~8-20ms

Perf depends on # 
elements 
retained

Harris, M., S. Sengupta, and J.D. Owens. “Parallel Prefix Sum (Scan) in CUDA”.  
GPU Gems 3



Application: Radix Sort

Sort 4M 32-bit 
integers: 

165ms

Perform split 
operation on each 
bit using scan

Can also sort each 
block and merge

Slower due to 
cost of merge



CUDA Tools and Resources



CUDA Programming Resources

CUDA Toolkit
Compiler and libraries
Free download for Windows, Linux, and Mac OSX

CUDA SDK
Code samples
Whitepapers

Instruction materials
Slides and audio
Parallel programming course at University of Illinois UC
Tutorials

Development tools
Libraries



GPU Tools

Profiler
Available now for all supported OSs
Command-line or GUI
Sampling signals on GPU for:

Memory access parameters
Execution (serialization, divergence)

Debugger
Demo shown at SC07
Runs on the GPU

Emulation mode
Compile and execute in emulation on CPU
Allows CPU-style debugging in GPU source



New Features

CUDA 2.02 Beta
Beta available on the NVIDIA website
Support for GeForce GTX 260 & 280:

Double precision
Integer atomic operations in shared memory

New features:
3D textures
Video Decoding Interface with Compute 1.1+ GPU
Improved and extended Direct3D interoperability

CUDA implementation on multi-core CPUs
Beta coming soon



Double Precision

NVIDIA GPUs (G8x and G9x) are single precision
IEEE 32-bit floating-point precision (“FP32”)
You can use double, but it gets demoted to float

NVIDIA GPUs (GT200) have double precision
IEEE 64-bit floating-point precision (“FP64”)
Double precision will be slower (more register pressure 
and more cycles)

Be explicit about float and double!  
Use double only where needed



Sample Applications



CUDA N-Body Simulation

10B interactions/s
16K bodies

44 FPS
x 20 FLOPS / interaction
x 16K2 interactions / frame

= 240 GFLOP/s on G80



DXT Compression

Offline
Runtime
Real-Time

256x256 RGB = 256 kB 128x128 RGB = 64 kB 256x256 DXT1 = 32 kB



Histogram

Representation of the distribution of colors in an 
image
Applications:

Image Analysis
HDR Tone Mapping

Reinhard HDR Tonemapping operator HDR in Valve’s source engine



Histogram

CUDA Histogram is 300x faster than previous 
GPGPU approaches

64 bins 256 bins

CUDA¹ 6500 MB/s 3676 MB/s

R2VB² 22.8 MB/s 42.6 MB/s

CPU³ 826 MB/s 1096 MB/s

¹ http://developer.download.nvidia.com/compute/cuda/sdk/website/samples.html#histogram64
² Efficient Histogram Generation Using Scattering on GPUs, T. Sheuermann, AMD Inc, I3D 2007
³ Intel Core 2 @ 2.9 GHz

http://developer.download.nvidia.com/compute/cuda/sdk/website/samples.html#histogram64


Game AI Breakdown

3 Main AI Computations to Accelerate
Spatial reasoning
Decision making
Path finding

Computation breakdown:
For “bot” simulation:

Spatial reasoning: 35%
Path finding: 65%

For crowd simulation:
Spatial reasoning: 5%
Path finding: 95%

Decision making always negligible

Biggest opportunity for GPU acceleration is path finding



A* Algorithm

Commonly used path finding algorithm
A* itself is not very parallel
Parallelism comes from computing many separate A* 
paths in parallel 

Many units moving simultaneously
Massive worlds with thousands of characters



CUDA Particle-Based Fluid

Grid-based fluids have limitations for use in games
Expensive, constrained to a box

Smoothed Particle Hydrodynamics (SPH) simulates 
fluid as a collection of interacting particles

Localized collisions and pressure distribution
CUDA enables dynamic
construction of a uniform
grid data structure to
accelerate neighborhood
computations
32K particles at 60fps
GeForce 8800 GTX



GPU Fluid Simulation 



CUDA and Physics: PhysX implemented in Cuda

Typical physics core simulation features
Rigid Body Dynamics
Universal Collision-Detection 
Joints, Springs and Motors
Advanced ragdoll and vehicle constraints

High performance realism (beyond the basics)
Volumetric Fluids (SPH)

CCD with rigid bodies and static geometry
One- or two-way interaction with rigid bodies

Cloth and Soft Bodies
Attachment and CCD with rigid bodies and static geometry
Cloth self collision
Tearing
Derivatives: Sheet metal and vegetation



Where to go from here

Get CUDA Toolkit, SDK, and Programming Guide:
http://developer.nvidia.com/CUDA

CUDA works on all NVIDIA 8-Series GPUs (and later)
GeForce, Quadro, and Tesla

Talk about CUDA: http://forums.nvidia.com

http://developer.nvidia.com/CUDA


100M CUDA GPUs

Oil & 
Gas

Finance Medical Biophysics Numerics Audio Video Imaging

Heterogeneous Computing

CPUCPUCPU
GPUGPUGPU60K CUDA Developers



Questions?
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