Shader Model 3.0

Ashu Rege
NVIDIA Developer Technology Group

Talk Outline

Quick Intro - GeForce 6 Series (NV4X family)

New Vertex Shader Features
* Vertex Texture Fetch
® Longer Programs and Dynamic Flow Control
* Vertex Frequency Stream Divider (Instancing)

New Pixel Shader Features
* Longer Programs and Dynamic Flow Control
* Multiple Render Targets

Floating-Point Blending and Filtering
Final Thoughts

©2004 NVIDIA Corporation. All rights reserved.

GeForce 6 Series

® Shader Model 3.0 at all price points
® Full support for shader model 3.0
® Vertex Texture Fetch / Long programs / Pixel Shader flow control
* Full speed fp32 shading

® OpenEXR High Dynamic Range Rendering
* Floating point frame buffer blending

* Floating point texture filtering
® Except 6200

® 6800 Ultra/GT specs
e 222M xtors /0.13um
® 6 vertex units / 16 pixel pipelines

® PCI Express and AGP

©2004 NVIDIA Corporation. All rights reserved.

(NV40)

@)
@)
0
©
b
O)
—
@)
B
D)
O

<
Complete Native Shader Model 3.0 Support

Shader Model 2.0 | Shader Model 3.0

Vertex Shader Model 2.0 3.0

Vertex Shader
Instructions

256 216 (65,535)

“Displacement Mapping” v

Vertex Texture Fetch

v
Geometry Instancing v
4

Dynamic Flow Control
Pixel Shader Model : &0

Required Shader
Precision

Pixel Shader Instructions 20(65,555)
Subroutines

fp32

Loops & Branches

Dynamic Flow Control

Vertex Shader 3.0

Detail of a Single Vertex Shader Pipeline G_

Input Vertex
Data

<
<

|

Vertex
Texture
Fetch

1 l
1

Branch
Unit

|

Texture Primitive
Cache Assembly

!

v

Viewport Processing

;

©2004 NVIDIA Corporation. All rights reserved. TO Set U p

Vertex Shader Version Summary

K2

—

2.0

2.0a

S

of instruction slots

256

256

>= 512

Max # of instructions executed

65535

65535

216 (65,535)

Instruction Predication

v

v

Temp Registers

12

13

constant registers

Static Flow Control

v

v

Dynamic Flow Control

v

Dynamic Flow Control depth

24

Vertex Texture Fetch

of texture samplers

Geometry Instancing Support

Note: There is no vertex shader 2.0b

©2004 NVIDIA Corporation. All rights reserved.

Flow Control: Static vs. Dynamic

void Shader(
in float3 normal,

uniform float3 lightDirection,
uniform bool computelLight,
Static Flow Control
(condition constant
for each batch of triangles)

1T (computeLight)| {

iIfT (dot(lightDirection, normal))

Dynamic Flow Control

(data dependent, so
condition can vary per
vertex or pixel)

Static v. Dynamic Flow Control <Z

® Static Flow Control
® Based on ‘uniform’ variables, a.k.a. constants
® Same code executed for every vertex in draw call

® Dynamic Flow Control
® Based on per-vertex attributes
® Each vertex can take a different code path

©2004 NVIDIA Corporation. All rights reserved.

Using Flow Control <§

® Subroutines, loops, and conditionals simplify
programming
[if, else, endif] [loop, endloop] [rep, endrep]
call, callnz, ret
Conditionals can be nested
Fewer vertex shaders to manage

® Dynamic branches only have ~2 cycle overhead

e Even if vertices take different branches

* Use this to avoid unnecessary vertex work (e.g., skinning,
N.L<O, ..))

e [f you can branch to skip more than 2 cycles of work, do it!

©2004 NVIDIA Corporation. All rights reserved.

Geometry Instancing

DirectX 9 Instancing <§

® \What is instancing?

® Allows a single draw call to draw multiple instances
of the same model

® Allows you to minimize draw primitive calls and
reduce CPU overhead

® \What Iis required to use it?
® Microsoft DirectX 9.0c
* VS 3.0 hardware

® API is layered on top of
IDirect3DDevice9::SetStreamSourceFreq

©2004 NVIDIA Corporation. All rights reserved.

Why Use Instancing? <Z

® Speed
® Single biggest perf sink is # of draw calls

® \We all know draw calls are bad

® But world matrices and other state changes force us
to make multiple draw calls

® Instancing API pushes per instance draws
down to hardware/driver

® Eliminates API and driver overhead

©2004 NVIDIA Corporation. All rights reserved.

How does it work? <2

Stream 0 Vertex Data

Stream 1 Per instance data

® Primary stream is a single copy of the model
geometry

® Secondary stream(s) contain per-instance data
® Transform matrices, colors, texture indices

® Vertex shader does matrix transformations based
on vertex attributes

® Pointer Is advanced each time an instance of the
primary stream is rendered.

©2004 NVIDIA Corporation. All rights reserved.

Instancing Demo

® Space scene with 500+ ships, 4000+ rocks

® Complex lighting, post-processing
® Some simple CPU collision work as well

® Dramatically faster with instancing

L R AT |

©2004 NVIDIA Corporation. All rights reserved.

Some Test Results @;

Test scene draws 1 million diffuse shaded polygons

Changing the batch size changes # of drawn instances

For small batch sizes, can provide extreme win due to PER DRAW CALL
savings

There is a fixed overhead from adding the extra data into the vertex stream
Sweet spot depends on many factors (CPU/GPU speed, engine overhead, etc.)

Instancing versus Single Daw Calls

—&o— Instancing

-- No Instancing

Frame Rate

Batch Size

©2004 NVIDIA Corporation. All rights reserved.

When To Use Instancing <Z

® Many instances of the same model
® Forest of trees, particle systems, sprites

® Can encode per instance data in aux stream
® Colors, texture coordinates, per-instance constants

® Not as useful Is batching overhead is low
® Fixed overhead to instancing

©2004 NVIDIA Corporation. All rights reserved.

Vertex Texture Fetch

An Example of Vertex Texturing:
Displacement Mapping

Displacement
Texture

Flat Tessellated Mesh Displaced Mesh

©2004 NVIDIA Corporation. All rights reserved.

Vertex Texture Examples

Without Vertex Textures With Vertex Textures

Images used with permission from Pacific Fighters. © 2004 Developed by 1C:Maddox Games.
All rights reserved. © 2004 Ubi Soft Entertainment.

©2004 NVIDIA Corporation. All rights reserved.

More Vertex Texture Examples @;

£l

Without Vertex Textures With Vertex Textures

Images used with permission from Pacific Fighters. © 2004 Developed by 1C:Maddox Games.
All rights reserved. © 2004 Ubi Soft Entertainment.

©2004 NVIDIA Corporation. All rights reserved.

Vertex Texture <§

® Multiple vertex texture units

e DX9: 4 samplers (D3DVERTEXTEXTURESAMPLERN)
e OGL: glGetlIntegerv(MAX VERTEX TEXTURE_ IMAGE_UNITS_ARB)

® 4 units on GeForce 6 Series hardware
® Supports point filtering only (currently)
® Supports mipmapping

* Need to calculate LOD yourself
® Uses standard 2D texture samplers

® DX9: R32F and R32G32B32A32F formats

® OGL: LUMINANCE FLOAT32_ ATI Of RGBA FLOAT32 ATI formats
® Arbitrary number of fetches

©2004 NVIDIA Corporation. All rights reserved.

Vertex Texture Applications

® Simple displacement mapping

* Note — not adaptive displacement mapping
« Hardware doesn’t tessellate for you

* Terrain, ocean surfaces

® Render to vertex texture
* Provides feedback path from fragment program to vertex program

® Particle systems
* Calculate particle positions using fragment program, read
positions from texture in vertex program, render as points
® Character animation

e Can do arbitrarily complex character animation using fragment
programs, read final result as vertex texture

* Not limited by vertex attributes — can use lots of bones, lots of
blend shapes

©2004 NVIDIA Corporation. All rights reserved.

GPU Particle System

=

B gpu particle system

©2004 NVIDIA Corporation. All rights reserved.

Pixel Shader 3.0

©2004 NVIDIA Corporation. All rights reserved.

Pixel Shader Version Summary

S

2.0

2.0a

2.0b

S5 U

Dependent Texture Limit

4

No limit

4

No limit

Texture Instruction Limit

32

unlimited

unlimited

unlimited

Position Register

v

Instruction Slots

512

512

>=512

Executed Instructions

512

S1i2

216 (65,535)

Interpolated Registers

2+38

218

10

Instruction Predication

v

v

Indexed Input Registers

v

Temp Registers

22

82

o2

Constant Registers

32

32

Arbitrary Swizzling

v

v

Gradient Instructions

v

v

Loop Count Register

v

Face Register (2-sided lighting)

v

Dynamic Flow Control Depth

PS3.0 Branching Performance <2

® Static branching is fast

® But still may not be worth it for short branches (less
than ~5 instructions)

® Can use conditional execution instead

® Divergent (data-dependent) branching is more
expensive

® Depends on which pixels take which branches

©2004 NVIDIA Corporation. All rights reserved.

Branch Overhead

® Pixel shader flow control
Instruction costs:

Instruction Cost (Cycles)
if / endif 4
If / else / endif

call

ret

loop / endloop

® Not free, but certainly usable and can save a
ton of work!

©2004 NVIDIA Corporation. All rights reserved.

Multiple Lights Demo

-
M simple_fragment_program?2

Avalilable at http://developer.nvidia.com/object/sdk samples.html

Pixel Shader Ray Tracer

4
-

r r
A r
r
i - F
y
\.'. J‘
" f
; £
o
r y
v y
¥ -

Available at http://developer.nvidia.com/object/sdk effects.html

(@

Pixel Shader Looping Example fcz
- Single Pass Volume Rendering |

® Application only renders a single quad

Pixel shader calculates intersection between view ray
and bounding box, discards pixels outside

Marches along ray between far and near intersection
points, accumulating color and opacity

® Looks up in 3D texture, or evaluates procedural function at
each sample

Compiles to REP/ENDREP loop

* Allows us to exceed the 512 instruction PS2.0 limit
* All blending is done at fp32 precision in the shader
* 100 steps is interactive on 6800 Ultra

©2004 NVIDIA Corporation. All rights reserved.

1 Pass Volume Rendering Examples @;

Extra Full Precision Interpolators <%

® 10 full precision interpolators (texcoords)
® Compared to 8 in earlier pixel shader versions

® More inputs for lighting parameters, ...

® Multiple lights in one long shader
® Compared to re-rendering for each light
® Doesn’t work well with stencil shadows

Early Outs <§

® “Early out” is a dynamic branch in the shader
to bypass computation

® Some obvious examples:
e |f in shadow, don’t do lighting computations

e |f out of range (attenuation zero), don’t light
® These apply to vs.3.0 as well

® Next — a novel example for soft-edged
shadows

Soft-Edged Shadows with ps 3.0

fps = 37.7 mode = MW4X
Jitter = yes fwidth =850

Available at http://developer.nvidia.com/object/sdk samples

Soft-Edged Shadows with ps 3.0 <%

® \Works by taking 8 “test” samples from shadow map
e If all 8 in shadow or all 8 in the light we're done

* |f we're on the edge (some are in shadow some are in light), do
56 more samples for additional quality

® 64 samples at much lower cost!
® Quick-and-dirty adaptive sampling

©2004 NVIDIA Corporation. All rights reserved.

ps.3.0 — Soft Shadows "%

® This demo on GeForce 6 Series GPUs

® Dynamic sampling > 2x faster vs. 64 samples
everywhere

® Completely orthogonal to other parts of the HW (for
example, stencil is still usable)

® Can do even more complex decision-making if
necessary

® Combine with hardware shadow maps
* High-quality real-time “soft” shadows are a reality

©2004 NVIDIA Corporation. All rights reserved.

Summary <Z

® Shader Model 3.0 provides a nice collection of
useful features

® | ooping/branching/conditional constructs allow

greater programming flexibility

® Must watch out for performance gotchas
® Don’'t make everything a nail for the SM3.0 hammer

References

® Tons of resources at
http://developer.nvidia.com

* NVIDIA SDK
« http://developer.nvidia.com/object/sdk _home.html "m:‘m“;"“-

» Individual Standalone Samples (.zip) t}m =S

e http://developer.nvidia.com/object/sdk _samples.html :f: %-
* Individual FX Composer Effects (.fx) _
« http://developer.nvidia.com/object/sdk_effects.html _ /
e Documentation ¥ %T
* NVIDIA GPU Programming Guide VIR
e http://developer.nvidia.com/object/gpu_programming_quide.html

® Recent Conference Presentations
e http://developer.nvidia.com/object/presentations.html

©2004 NVIDIA Corporation. All rights reserved.

Questions? <§

® Support e-mail:
® devrelfeedback@nvidia.com [Technical Questions]
® sdkfeedback@nvidia.com [Tools Questions]

