
Shader Model 3.0 Shader Model 3.0

Ashu Ashu RegeRege
NVIDIA Developer Technology GroupNVIDIA Developer Technology Group

©2004 NVIDIA Corporation. All rights reserved.

Talk Outline

Quick Intro - GeForce 6 Series (NV4X family)
New Vertex Shader Features

Vertex Texture Fetch
Longer Programs and Dynamic Flow Control
Vertex Frequency Stream Divider (Instancing)

New Pixel Shader Features
Longer Programs and Dynamic Flow Control
Multiple Render Targets

Floating-Point Blending and Filtering
Final Thoughts

©2004 NVIDIA Corporation. All rights reserved.

GeForce 6 Series

Shader Model 3.0 at all price points
Full support for shader model 3.0Full support for shader model 3.0
Vertex Texture Fetch / Long programs / Pixel Shader flow controlVertex Texture Fetch / Long programs / Pixel Shader flow control
Full speed fp32 shadingFull speed fp32 shading

OpenEXR High Dynamic Range RenderingOpenEXR High Dynamic Range Rendering
Floating point frame buffer blendingFloating point frame buffer blending
Floating point texture filteringFloating point texture filtering
Except 6200Except 6200

6800 Ultra/GT specs6800 Ultra/GT specs
222M 222M xtorsxtors / 0.13um/ 0.13um
6 vertex units / 16 pixel pipelines

PCI Express and AGPPCI Express and AGP

©2004 NVIDIA Corporation. All rights reserved.

GeForce 6800 GeForce 6800 –– (NV40)(NV40)

©2004 NVIDIA Corporation. All rights reserved.

Complete Native Shader Model 3.0 Support

fp32fp32fp24fp24Required Shader
Precision

2216 16 (65,535)(65,535)9696Pixel Shader Instructions

3.03.02.02.0Pixel Shader Model

--Dynamic Flow Control
--Loops & Branches
--Subroutines

--Dynamic Flow Control
--Geometry Instancing
--Vertex Texture Fetch
--“Displacement Mapping”

2216 16 (65,535)(65,535)256256Vertex Shader
Instructions

3.03.02.02.0Vertex Shader Model

Shader Model 3.0Shader Model 3.0Shader Model 2.0Shader Model 2.0

©2004 NVIDIA Corporation. All rights reserved.

Vertex Shader 3.0Vertex Shader 3.0

©2004 NVIDIA Corporation. All rights reserved.

Detail of a Single Vertex Shader Pipeline

FP32
Vector
Unit

Primitive
Assembly

Input Vertex
Data

To Setup

FP32
Scalar
Unit

Viewport Processing

Branch
Unit

Vertex
Texture
Fetch

Texture
Cache

©2004 NVIDIA Corporation. All rights reserved.

Vertex Shader Version Summary

--Vertex Texture Fetch
4--# of texture samplers

Static Flow Control
>= 256>= 256>= 256# constant registers

2424-Dynamic Flow Control depth

--Geometry Instancing Support

-Dynamic Flow Control

321312Temp Registers
-Instruction Predication

2216 16 (65,535)(65,535)6553565535Max # of instructions executed
>= 512256256# of instruction slots

3.02.0a2.0

Note: There is no vertex shader 2.0bNote: There is no vertex shader 2.0b

©2004 NVIDIA Corporation. All rights reserved.

Flow Control: Static vs. Dynamic
void Shader(

...
// Input per vertex or per pixel

in float3 normal,

// Input per batch of triangles
uniform float3 lightDirection,
uniform bool computeLight,

...
)
{
...
if (computeLight) {

...
if (dot(lightDirection, normal)) {

...
}
...

}
...

}

Static Flow Control
(condition constant

for each batch of triangles)

Dynamic Flow Control
(data dependent, so

condition can vary per
vertex or pixel)

©2004 NVIDIA Corporation. All rights reserved.

Static v. Dynamic Flow Control

Static Flow Control
Based on ‘uniform’ variables, a.k.a. constants
Same code executed for every vertex in draw call

Dynamic Flow Control
Based on per-vertex attributes
Each vertex can take a different code path

©2004 NVIDIA Corporation. All rights reserved.

Using Flow Control

Subroutines, loops, and conditionals simplify
programming

[if, else, endif] [loop, endloop] [rep, endrep]
call, callnz, ret
Conditionals can be nested
Fewer vertex shaders to manage

Dynamic branches only have ~2 cycle overhead
Even if vertices take different branches
Use this to avoid unnecessary vertex work (e.g., skinning,
N.L<0, ...)
If you can branch to skip more than 2 cycles of work, do it!

©2004 NVIDIA Corporation. All rights reserved.

Geometry InstancingGeometry Instancing

©2004 NVIDIA Corporation. All rights reserved.

DirectX 9 Instancing

What is instancing?
Allows a single draw call to draw multiple instances
of the same model
Allows you to minimize draw primitive calls and
reduce CPU overhead

What is required to use it?
Microsoft DirectX 9.0c
VS 3.0 hardware
API is layered on top of
IDirect3DDevice9::SetStreamSourceFreq

©2004 NVIDIA Corporation. All rights reserved.

Why Use Instancing?

Speed
Single biggest perf sink is # of draw calls

We all know draw calls are bad
But world matrices and other state changes force us
to make multiple draw calls

Instancing API pushes per instance draws
down to hardware/driver

Eliminates API and driver overhead

©2004 NVIDIA Corporation. All rights reserved.

How does it work?

Primary stream is a single copy of the model
geometry
Secondary stream(s) contain per-instance data

Transform matrices, colors, texture indices
Vertex shader does matrix transformations based
on vertex attributes
Pointer is advanced each time an instance of the
primary stream is rendered.

Vertex Data
VS_3_0

Stream 0

Stream 1 Per instance data

©2004 NVIDIA Corporation. All rights reserved.

Instancing Demo

Space scene with 500+ ships, 4000+ rocks
Complex lighting, post-processing

Some simple CPU collision work as well
Dramatically faster with instancing

©2004 NVIDIA Corporation. All rights reserved.

Some Test Results

Test scene draws 1 million diffuse shaded polygons
Changing the batch size changes # of drawn instances
For small batch sizes, can provide extreme win due to PER DRAW CALL
savings
There is a fixed overhead from adding the extra data into the vertex stream
Sweet spot depends on many factors (CPU/GPU speed, engine overhead, etc.)

Instancing versus Single Daw Calls

Batch Size

Fr
am

e
R

at
e

Instancing

No Instancing

©2004 NVIDIA Corporation. All rights reserved.

When To Use Instancing

Many instances of the same model
Forest of trees, particle systems, sprites

Can encode per instance data in aux stream
Colors, texture coordinates, per-instance constants

Not as useful is batching overhead is low
Fixed overhead to instancing

©2004 NVIDIA Corporation. All rights reserved.

Vertex Texture FetchVertex Texture Fetch

©2004 NVIDIA Corporation. All rights reserved.

An Example of Vertex Texturing:
Displacement Mapping

Flat Tessellated Mesh Displaced Mesh

Displacement
Texture

©2004 NVIDIA Corporation. All rights reserved.

Vertex Texture Examples

Without Vertex Textures

Images used with permission from Pacific Fighters. © 2004 Developed by 1C:Maddox Games.
All rights reserved. © 2004 Ubi Soft Entertainment.

With Vertex Textures

©2004 NVIDIA Corporation. All rights reserved.

More Vertex Texture Examples

Without Vertex Textures

Images used with permission from Pacific Fighters. © 2004 Developed by 1C:Maddox Games.
All rights reserved. © 2004 Ubi Soft Entertainment.

With Vertex Textures

©2004 NVIDIA Corporation. All rights reserved.

Vertex Texture

Multiple vertex texture units
DX9: 4 samplers (D3DVERTEXTEXTURESAMPLERn)
OGL: glGetIntegerv(MAX_VERTEX_TEXTURE_IMAGE_UNITS_ARB)
4 units on GeForce 6 Series hardware

Supports point filtering only (currently)
Supports mipmapping

Need to calculate LOD yourself
Uses standard 2D texture samplers
DX9: R32F and R32G32B32A32F formats
OGL: LUMINANCE_FLOAT32_ATI or RGBA_FLOAT32_ATI formats
Arbitrary number of fetches

©2004 NVIDIA Corporation. All rights reserved.

Vertex Texture Applications

Simple displacement mapping
Note – not adaptive displacement mapping

Hardware doesn’t tessellate for you
Terrain, ocean surfaces

Render to vertex texture
Provides feedback path from fragment program to vertex program

Particle systems
Calculate particle positions using fragment program, read
positions from texture in vertex program, render as points

Character animation
Can do arbitrarily complex character animation using fragment
programs, read final result as vertex texture
Not limited by vertex attributes – can use lots of bones, lots of
blend shapes

©2004 NVIDIA Corporation. All rights reserved.

GPU Particle System

©2004 NVIDIA Corporation. All rights reserved.

Pixel Shader 3.0Pixel Shader 3.0

©2004 NVIDIA Corporation. All rights reserved.

Pixel Shader Version Summary

--Arbitrary Swizzling
224323232Constant Registers

---Loop Count Register

24---Dynamic Flow Control Depth
---Face Register (2-sided lighting)

--Gradient Instructions

32322212Temp Registers
---Indexed Input Registers
--Instruction Predication

102 + 82 + 82 + 8Interpolated Registers
2216 16 (65,535)(65,535)51251232 + 64Executed Instructions

>= 51251251232 + 64Instruction Slots
---Position Register

unlimitedunlimitedunlimited32Texture Instruction Limit
No limit4No limit4Dependent Texture Limit

3.02.0b2.0a2.0

©2004 NVIDIA Corporation. All rights reserved.

PS3.0 Branching Performance

Static branching is fast
But still may not be worth it for short branches (less
than ~5 instructions)
Can use conditional execution instead

Divergent (data-dependent) branching is more
expensive

Depends on which pixels take which branches

©2004 NVIDIA Corporation. All rights reserved.

Branch Overhead

Pixel shader flow control
instruction costs:

Not free, but certainly usable and can save a
ton of work!

4loop / endloop
2ret
2call
6if / else / endif
4if / endif

Cost (Cycles)Instruction

©2004 NVIDIA Corporation. All rights reserved.

Multiple Lights Demo

Available at http://developer.nvidia.com/object/sdk_samples.html

©2004 NVIDIA Corporation. All rights reserved.

Pixel Shader Ray Tracer

Available at http://developer.nvidia.com/object/sdk_effects.html

©2004 NVIDIA Corporation. All rights reserved.

Pixel Shader Looping Example
- Single Pass Volume Rendering

Application only renders a single quad
Pixel shader calculates intersection between view ray
and bounding box, discards pixels outside
Marches along ray between far and near intersection
points, accumulating color and opacity

Looks up in 3D texture, or evaluates procedural function at
each sample

Compiles to REP/ENDREP loop
Allows us to exceed the 512 instruction PS2.0 limit
All blending is done at fp32 precision in the shader
100 steps is interactive on 6800 Ultra

©2004 NVIDIA Corporation. All rights reserved.

1 Pass Volume Rendering Examples

©2004 NVIDIA Corporation. All rights reserved.

Extra Full Precision Interpolators

10 full precision interpolators (texcoords)
Compared to 8 in earlier pixel shader versions

More inputs for lighting parameters, ...

Multiple lights in one long shader
Compared to re-rendering for each light
Doesn’t work well with stencil shadows

©2004 NVIDIA Corporation. All rights reserved.

Early Outs

“Early out” is a dynamic branch in the shader
to bypass computation
Some obvious examples:

If in shadow, don’t do lighting computations
If out of range (attenuation zero), don’t light
These apply to vs.3.0 as well

Next – a novel example for soft-edged
shadows

©2004 NVIDIA Corporation. All rights reserved.

Soft-Edged Shadows with ps 3.0

Available at http://developer.nvidia.com/object/sdk_samples.html

©2004 NVIDIA Corporation. All rights reserved.

Soft-Edged Shadows with ps 3.0

Works by taking 8 “test” samples from shadow map
If all 8 in shadow or all 8 in the light we’re done
If we’re on the edge (some are in shadow some are in light), do
56 more samples for additional quality

64 samples at much lower cost!
Quick-and-dirty adaptive sampling

©2004 NVIDIA Corporation. All rights reserved.

ps.3.0 – Soft Shadows

This demo on GeForce 6 Series GPUs
Dynamic sampling > 2x faster vs. 64 samples
everywhere
Completely orthogonal to other parts of the HW (for
example, stencil is still usable)
Can do even more complex decision-making if
necessary

Combine with hardware shadow maps
High-quality real-time “soft” shadows are a reality

©2004 NVIDIA Corporation. All rights reserved.

Summary

Shader Model 3.0 provides a nice collection of
useful features
Looping/branching/conditional constructs allow
greater programming flexibility
Must watch out for performance gotchas

Don’t make everything a nail for the SM3.0 hammer

©2004 NVIDIA Corporation. All rights reserved.

References

Tons of resources at
http://developer.nvidia.com

NVIDIA SDK
http://developer.nvidia.com/object/sdk_home.html

Individual Standalone Samples (.zip)
http://developer.nvidia.com/object/sdk_samples.html

Individual FX Composer Effects (.fx)
http://developer.nvidia.com/object/sdk_effects.html

Documentation
NVIDIA GPU Programming Guide

http://developer.nvidia.com/object/gpu_programming_guide.html
Recent Conference Presentations

http://developer.nvidia.com/object/presentations.html

©2004 NVIDIA Corporation. All rights reserved.

Questions?

Support e-mail:
devrelfeedback@nvidia.com [Technical Questions]
sdkfeedback@nvidia.com [Tools Questions]

