Dynamic Ambient Occlusion
and Indirect Lighting

Michael Bunnell
NVIDIA Corporation
Environment Lighting

Environment Map

+ Ambient Occlusion

+ Indirect Lighting
New Radiance Transfer Algorithm

- Useful for calculating Ambient Occlusion and Indirect Lighting
- Efficient and parallelizable
- Implementation is real-time on GPU
- Ideal for non-rigid bodies and dynamic environments
Dynamic Ambient Occlusion

- Define polygon meshes as disk-shaped elements
 - one element created for each vertex
 - elements defined by position, normal, and area
 - simplifies form factor calculation
Form Factor

Emitter element E occludes receiver element R based on distance r and angles θ_E and θ_R

- Percentage of the hemisphere above a point occluded by an element (Solid Angle)
- Like radiosity form factor with 100% visibility
Calculating Occlusion

- Calculate occlusion at a receiver element by summing form factors:

 \[
 \text{occlusion} = 0; \\
 \text{for each element } E \\
 \quad \text{occlusion} += \text{form factor of } E;
 \]
Element Hierarchy

- We do not need to consider so many elements to get an accurate answer
 - A detailed head or simple ball will shadow distant objects the same
- Group elements together, forming larger elements
- Only traverse children when close to parent
- Easy to generate automatically since we don’t need actual geometry
Double Shadowing

- A and B both shadow C
- C shadowed properly
- No double shadowing
Double Shadowing

- A and B both shadow C
- C is shadowed too much
- Double shadowing after first pass
Double Shadowing

- Lighten B’s shadow in second pass since it is shadowed
- Double shadowing eliminated
Eliminating Double Shadowing

- Multiply form factor by 1 - occlusion calculated in the previous pass
- Converges to correct shadowing quickly (2 passes are often enough)
- Results compare favorably with ray tracing
GPU Implementation

- Element data and index coordinates stored in a texture maps
 - Position, normal and area* are dynamic
 - Index coordinates are pre-computed
- Shader traverses elements in a loop using next or child index coordinates
- Render a single quad (2 triangles) to complete a pass, 1 pixel per element
- Results are rendered to a texture for use in subsequent passes
Performance

![Graph showing performance comparison between GeForce 6800 Ultra and 2.0 GHz Pentium 4 processors. The graph plots vertices per second against vertices in mesh.]
Indirect Lighting

- Light reflecting off diffuse surfaces
- Used effectively in Shrek 2
- Adds an extra level of realism
- Can be used with traditional and environment lighting
Direct Lighting

Scene lit with shadow mapped point light source
Indirect Light Pass 1

Distribute indirect light in first pass
Indirect Light Pass 2

Shadow indirect light in second pass
Direct Light + 1 Bounce Indirect Light

Indirect light * surface color + direct light
Direct Light + 2 Bounces Indirect Light

Second bounce of indirect light takes 2 more passes
Indirect Lighting Shader

- Use the same basic shader as ambient occlusion
- Uses standard radiosity disk to disk radiance transfer approximation
- First pass distributes 3-component light values
- One or more subsequent passes shadow that light, subtracting from it
- Area lights can use the same shader
Applications

- Shadow environment lighting of non-rigid objects
- Indirect lighting
- Area lights
- Subsurface scattering*
- Accelerate generation of
 - pre-computed radiance transfer data
 - light maps
 - ambient occlusion data
The Source for
GPU Programming

developer.nvidia.com

- Latest News
- Developer Events Calendar
- Technical Documentation
- Conference Presentations
- GPU Programming Guide
- Powerful Tools, SDKs and more ...

Join our FREE registered developer program for early access to NVIDIA drivers, cutting edge tools, online support forums, and more.

developer.nvidia.com

©2004 NVIDIA Corporation. NVIDIA, and the NVIDIA logo are trademarks and/or registered trademarks of NVIDIA Corporation. Nalu is ©2004 NVIDIA Corporation. All rights reserved.
GPU Gems 2
Programming Techniques for High-Performance Graphics and General-Purpose Computation

- 880 full-color pages, 330 figures, hard cover
- $59.99
- Experts from universities and industry

“The topics covered in GPU Gems 2 are critical to the next generation of game engines.”
— Gary McTaggart, Software Engineer at Valve, Creators of Half-Life and Counter-Strike

“GPU Gems 2 isn’t meant to simply adorn your bookshelf—it’s required reading for anyone trying to keep pace with the rapid evolution of programmable graphics. If you’re serious about graphics, this book will take you to the edge of what the GPU can do.”
— Rémi Arnaud, Graphics Architect at Sony Computer Entertainment