
Programming Graphics Hardware

Cloth Simulation on GPUCloth Simulation on GPU

Cyril Zeller

Programming Graphics Hardware

Cloth as a Set of Particles

A cloth object is a set of particles
Each particle is subject to:

A force (gravity or wind)
Various constraints:

To maintain overall shape (springs)
To prevent interpenetration with the environment

Constraints are resolved by relaxation

For more details, see:
Jakobsen, T. “Advanced character physics”, GDC 2001

Programming Graphics Hardware

Force

The equation of motion for each particle at position P(t)
subject to force F(t) is integrated using Verlet
integration:

P(t + ∆t) = P(t) + k (P(t) – P(t - ∆t)) + ∆t2 F(t) / m
∆t is the simulation time step
k is an arbitrary damping coefficient very close to 1
m is the mass of the particle

No force is applied to fixed or user-moved particles

Programming Graphics Hardware

Distance Constraints

Particles are linked by springs:

A spring is simulated as a distance constraint
between two particles

Shear springsStructural springs

Programming Graphics Hardware

Distance Constraints

A distance constraint between two particles is enforced
by moving them away or towards each other:

If both particles are free:
Distance too large:

Distance too small:

If one particle is fixed:
Distance too large:

Distance too small:

Distance
at rest

Programming Graphics Hardware

Collision Constraints

The environment is defined as a set of collision objects
(planes, spheres, boxes and ellipsoids)
A collision constraint between a particle and a collision
object is enforced by moving the particle outside the
object

Programming Graphics Hardware

Algorithm Outline

For every simulation time step:
For every particle that isn’t fixed or user-moved:

Apply force
For every relaxation step:

For every distance constraint:
Reposition particles

For every particle:
For every collision object:

If the particle is inside, move the particle out of the object

Programming Graphics Hardware

GPU Implementation

The particle positions and normals are stored into
floating-point textures PositionTex and NormalTex

The CPU never reads the content of these textures!
At every frame:

GPU simulation: Compute PositionTex and NormalTex
Rendering:
void VertexShader(float2 texCoord)

{

position = tex2Dlod(PositionTex, texCoord);

normal = tex2Dlod(NormalTex, texCoord);

...

}

Vertex buffer
contains only texture

coordinates

Programming Graphics Hardware

GPU Simulation: Force

float4 PixelShader(float2 texCoord)
{

float3 oldPos = tex2D(OldPositionTex, texCoord);
float3 currentPos = tex2D(CurrentPositionTex, texCoord);
float3 force = ComputeForce();
float3 newPos = currentPos

+ 0.99 * (currentPos – oldPos)
+ force * TimeStep * TimeStep; // Verlet

return newPos;
}

Three floating point textures:
OldPositionTex
CurrentPositionTex
NewPositionTex (used as render target)
Rotated after each draw call

Draw fullscreen quad with:

Programming Graphics Hardware

GPU Simulation: Distance Constraints

8 fullscreen quad draw calls to simulate the 8 springs
attached to a particle:

Programming Graphics Hardware

GPU Simulation: Distance Constraints

float4 PixelShader(float2 texCoord, float2 pixel : VPOS)
{

float2 offset = float2((pixel.x % 2 ? – Dx : Dx), 0);
float3 currentPos = tex2D(CurrentPositionTex, texCoord);
float3 neighborPos = tex2D(CurrentPositionTex, texCoord + offset);
float3 delta = neighborPos – currentPos;
float dist = length(delta);
float stiffness = tex2D(StiffnessTex, texCoord);
float3 newPos = currentPos

+ stiffness * (1 – DistanceAtRest / d) * delta;
return newPos;

}

Stiffness coefficients stored into 2D textures to deal with:
Cloth boundary
Fixed particles
Cut springs

Fullscreen quad draw call for:

Equal to either 0.5 or 0

Programming Graphics Hardware

GPU Simulation: Collision Constraints
Collision objects stored into 1D textures

1 texture per geometric type
Can’t index constant registers

Draw fullscreen quad with:
float4 PixelShader(float2 texCoord)
{

float3 currentPos = tex2D(CurrentPositionTex, texCoord);
for (int i = 0; i < NumPlanes; ++i) ...
for (int i = 0; i < NumSpheres; ++i) {

float4 sphere = tex1D(SphereTex, Ds * i);
currentPos += SphereConstraint(currentPos, sphere);

}
for (int i = 0; i < NumBoxes; ++i) ...
for (int i = 0; i < NumEllipsoids; ++i) ...
return currentPos;

}

Programming Graphics Hardware

GPU Simulation: Cloth Cutting
Set a render target with one pixel per triangle and clear it to 0
Draw fullscreen quad with:

float4 PixelShader(float2 texCoord, uniform Triangle Cutter)
{

Triangle tri;
tri.V0 = tex2D(CurrentPositionTex, texCoord);
tri.V1 = tex2D(CurrentPositionTex, texCoord + offset1));
tri.V2 = tex2D(CurrentPositionTex, texCoord + offset2));
if (TriangleIntersect(tri, Cutter))

return 1;
else

discard;
}

Read back render target to CPU
Modify stiffness textures
Modify cloth index buffer

Programming Graphics Hardware

GPU Gems: Programming Techniques,
Tips, and Tricks for Real-Time Graphics

Practical real-time graphics techniques from
experts at leading corporations and universities

Great value:
Full color (300+ diagrams and screenshots)
Hard cover
816 pages
CD-ROM with demos and sample code

“GPU Gems is a cool toolbox of advanced graphics
techniques. Novice programmers and graphics gurus
alike will find the gems practical, intriguing, and
useful.”
Tim Sweeney
Lead programmer of Unreal at Epic Games

“This collection of articles is
particularly impressive for its depth and
breadth. The book includes product-
oriented case studies, previously
unpublished state-of-the-art research,
comprehensive tutorials, and extensive
code samples and demos throughout.”
Eric Haines
Author of Real-Time Rendering

For more, visit:For more, visit:
http://http://developer.nvidia.com/GPUGemsdeveloper.nvidia.com/GPUGems

Programming Graphics Hardware

GPU Gems 2
Programming Techniques for High-Performance
Graphics and General-Purpose Computation

880 full-color pages, 330 figures, hard cover
$59.99
Experts from universities and industry

“The topics covered in GPU Gems 2 are critical to the next generation of game
engines.”
— Gary McTaggart, Software Engineer at Valve, Creators of Half-Life and Counter-Strike

“GPU Gems 2 isn’t meant to simply adorn your bookshelf—it’s required reading for
anyone trying to keep pace with the rapid evolution of programmable graphics. If
you’re serious about graphics, this book will take you to the edge of what the GPU
can do.”
—Rémi Arnaud, Graphics Architect at Sony Computer Entertainment

Programming Graphics Hardware

	Cloth Simulation on GPU
	Cloth as a Set of Particles
	Force
	Distance Constraints
	Distance Constraints
	Collision Constraints
	Algorithm Outline
	GPU Implementation
	GPU Simulation: Force
	GPU Simulation: Distance Constraints
	GPU Simulation: Distance Constraints
	GPU Simulation: Collision Constraints
	GPU Simulation: Cloth Cutting
	GPU Gems: Programming Techniques, Tips, and Tricks for Real-Time Graphics
	GPU Gems 2 Programming Techniques for High-PerformanceGraphics and General-Purpose Computation
	

