
Windowing System on a 3D Pipeline

February 2005

Copyright © NVIDIA Corporation 2005. All rights reserved

Agenda

1.Overview of the 3D pipeline

2.NVIDIA software overview

3.Strengths and challenges with using the 3D pipeline

Copyright © NVIDIA Corporation 2005. All rights reserved

GeForce 6800 – 220M Transistors

April 2004

16 pix/clock, 256-bit
mem interface

Scalable architecture

Copyright © NVIDIA Corporation 2005. All rights reserved

Copyright © NVIDIA Corporation 2005. All rights reserved

Overview of the 3D graphics pipeline

Supported primitives: Points, Lines, Triangles
Vertex positions can be determined by user-
specified programs
Primitives can be texture-mapped and Gouraud
shaded
Per-fragment color can be determined by user-
specified programs
Resultant pixel color can be (non-programmatically)
blended with the frame buffer

Copyright © NVIDIA Corporation 2005. All rights reserved

The Life of a Triangle

Copyright © NVIDIA Corporation 2005. All rights reserved

GeForce 6800 series 3D Pipeline

Triangle Setup

L2 Tex

Shader Instruction Dispatch

Fragment Crossbar

Memory
Partition

Memory
Partition

Memory
Partition

Memory
Partition

Z-Cull

Copyright © NVIDIA Corporation 2005. All rights reserved

Vertex processing

Primitives are processed one vertex at a time
Program determines position plus color and other
interpolants
All input types treated as float4 within program
Instruction set includes MUL, ADD, MAD, SIN, COS,
RSQ, (and TEX), etc.
Up to 512 instruction long program
Up to 64k instructions executed per vertex
Output values are interpolated by HW, then fed to
fragment processor
MIMD execution units

Copyright © NVIDIA Corporation 2005. All rights reserved

Fragment processing

Programs executed per-fragment, to generate
colors to be written to 1 – 4 buffers
Floating-point precision
Instruction set includes MUL, ADD, MAD, SIN, COS,
RSQ, numerous TEX, etc.
Up to 16 textures can be bound, unlimited fetches
from those texture maps
Anisotropic filtering, min/mag, rotation, etc.
Program length up to 8192 instructions
SIMD execution units, across many fragments

Copyright © NVIDIA Corporation 2005. All rights reserved

Raster Operations (ROP)

Z / stencil buffer operations
Blending with frame buffer (up to fp16)
Downsampling of AA samples into pixels
Highly optimized for distributing workload across
memory partitions

Copyright © NVIDIA Corporation 2005. All rights reserved

GeForce 6 speeds and feeds

Peak FP Performance
Vertex Engine (FP32)

6*5*2 * 400 MHz = 24 GFlops
Pixel Engine (FP32)

16*4*3 * 400 MHz = 76 GFlops
Texture Math Engine (FP16)

16*4*6 * 400 MHz = 154 GFlops
FP Blend (FP16)

16*4*3 * 550 MHz = 106 GFlops
Total = 260 FP16 & 92 FP32 GFlops

Peak FB Bandwidth
256-bit * 550 MHz DDR = 35.2 GB/s

Host transfers (PCI Express system)
~2.4 GB/s measured perf in each direction

Copyright © NVIDIA Corporation 2005. All rights reserved

Moving on to software ...

Copyright © NVIDIA Corporation 2005. All rights reserved

NVIDIA driver components

OpenGL client library libGLcore.so

GLX libGL.so

X component nvidia_drv.o

kernel-loadable module nvidia.ko

Copyright © NVIDIA Corporation 2005. All rights reserved

Overall architecture

Kernel component responsible for
Chip init
Servicing interrupts
Allocating GPU resources to user-space drivers

Client OpenGL driver
Optimize state changes
Compile / optimize vertex / fragment programs
Queue commands in “fire and forget” command buffer

GLX
Allow OpenGL to interface with window system
Allocate visible and offscreen surfaces
Management of clip regions

Copyright © NVIDIA Corporation 2005. All rights reserved

NVIDIA’s kernel module

Chip initialization

Allocator for video memory

Handles interrupts from GPU

Pins / unpins host memory for DMA

Raises OS events to user-mode drivers

Copyright © NVIDIA Corporation 2005. All rights reserved

NVIDIA’s X driver

Obviously, accelerates X commands

Surface allocation and management

Manage window clips for 3D windows

Acceleration of video decompression (XvMC)

Copyright © NVIDIA Corporation 2005. All rights reserved

NVIDIA’s OpenGL under the covers (1)

Initialization
Allocation of rendering surfaces
Graphics state init

State change
In most cases, update software shadowed copy of state
Mark dirty bit(s)
Return quickly
Texture loads can allocate memory dynamically
Matrix operations performed synchronously
Some instructions can be quite expensive

Copyright © NVIDIA Corporation 2005. All rights reserved

NVIDIA’s OpenGL under the covers (2)

Rendering command
Clean (validate) state for all dirty bits

Compile programs
Set potentially hundreds of state vectors

Move vertex data into DMA-visible regions
Enqueue rendering command

DMA kickoff begins when:
Command buffer starts to fill
Driver notices hardware has gone idle
Also explicit for glFlush(), glFinish(), SwapBuffers(), etc.

Copyright © NVIDIA Corporation 2005. All rights reserved

Strengths of the 3D pipeline ...

Minification / Magnification of textures

Rotation of textures at full speed

Blending / compositing

Able to feed YCbCr or RGB surfaces (to some GPUs)

Incredible flexibility in many parts of the pipeline

Copyright © NVIDIA Corporation 2005. All rights reserved

... But there’s also some problems

State changes of 3D pipeline can be very costly

High quality font rasterization best done by software

3D programs allowed to take arbitrary run time

Functional variance from vendor to vendor
color, position interpolation
sub-pixel precision
texture sampling

Copyright © NVIDIA Corporation 2005. All rights reserved

... But wait! There’s more!

Loss of video overlay

No indexed-8 output support

Current driver model allows one app to be greedy

Driver complexity grows significantly

3D rasterization rules don’t match X rules

Copyright © NVIDIA Corporation 2005. All rights reserved

Challenge: Memory management

Many threads can use OpenGL simultaneously
Any one thread can allocate surfaces, textures, etc.

How do you ensure any one process gets a fair
share of the resources?

1.Pre-allocate buffers for a compositor

2.Page out surfaces when one app wants full control

3.Other ideas?

Copyright © NVIDIA Corporation 2005. All rights reserved

Tying in video

Most MPEG processing typically done in YUV

GeForce accelerates conversion of YUV to RGB

Textures can also be stored in native YCbCr

Video scaling traditionally performed by video
overlay hardware

Copyright © NVIDIA Corporation 2005. All rights reserved

Challenge: Low latency video

v1 v2 v2 v3 v0 v1

PROBLEMS:
1.Compositor stalls from only double-buffering
2.Video lags behind audio
3.Lots of video memory required
4.3D pipe is “fire-and-forget”, so compositor latency

is not predictable

Video decode

Compositor

b0 b0 b0 b1 b0 b0 b1b1

v2

Scanout

time

Copyright © NVIDIA Corporation 2005. All rights reserved

Challenge: Keep the desktop responsive

Some app decides to draw one triangle, with a very
complex fragment shader program bound
One triangle could cover millions of pixels
A long program can run for tens of thousands of
cycles per fragment

Some simple math
1600 x 1200 x 50000 = 96 billion cycles of work
GPU clock is ~400 MHz – 500 MHz
GPU processes up to 16 elements per cycle
500 MHz * 16 pipes = 8 billion ops per second
96 billion ops of work / 8 billion ops per second =

12 seconds (to draw one triangle!)

Copyright © NVIDIA Corporation 2005. All rights reserved

Summary

With the right software design, layering a
windowing system atop 3D is possible

The 3D pipeline can offer great flexibility and
functionality

There are a lot of very challenging problems which
must be addressed

NVIDIA would be happy to work with you on this
design

Copyright © NVIDIA Corporation 2005. All rights reserved

Contact

Nick Triantos
nick@nvidia.com

	Windowing System on a 3D Pipeline
	Agenda
	GeForce 6800 – 220M Transistors
	Overview of the 3D graphics pipeline
	The Life of a Triangle
	GeForce 6800 series 3D Pipeline
	Vertex processing
	Fragment processing
	Raster Operations (ROP)
	GeForce 6 speeds and feeds
	Moving on to software ...
	NVIDIA driver components
	Overall architecture
	NVIDIA’s kernel module
	NVIDIA’s X driver
	NVIDIA’s OpenGL under the covers (1)
	NVIDIA’s OpenGL under the covers (2)
	Strengths of the 3D pipeline ...
	... But there’s also some problems
	... But wait! There’s more!
	Challenge: Memory management
	Tying in video
	Challenge: Low latency video
	Challenge: Keep the desktop responsive
	Summary
	Contact

