= Windowing System on a 3D Pipeline
@"A , Nick Triantos (nick ‘at’ nvidia.com), NVIDIA Corporation

RVIDIA. gebi11 2005

How 3D primitives are drawn

The overwhelming majority of 3D primitives are drawn on current graphics hardware
by decomposition into triangles (or triangle lists, triangle strips, etc.) Quads, points,
and lines are the other primitives used. The first stage of the graphics pipeline breaks
down these primitives into individual vertices. These input vertices are run through a
programmable vertex engine, which determines the positions in screen space. The
resultant vertices are reconstructed into the originally-input primitive (triangle, point,
line), and fed to a rasterizer. The rasterizer selects the fragments! affected by the
primitive, interpolates the per-vertex attributes, and feeds these fragments with their
interpolated attributes through to the programmable fragment processor. The fragment
processor determines a color (or colors, see below) for each fragment. Finally, the ROP
(Raster Op) portion of the pipeline determines if the resultant fragment should be
drawn into the frame buffer, and if so, blends the fragment’s color with the color in the
frame buffer.

Vertex processing pipeline

The vertex processors are typically configured to DMA the vertex positions, and
optionally colors, and texture coordinates, from arrays of vertex data. The GeForce
hardware supports float (fp32) data types, plus uint8 for colors (RGBA). The vertex
data can be fed as a stream of data, or can be stored in an array which is indexed by a
vertex index list.

Once the vertex data is fetched by the GPU, a vertex program is run on each vertex. The
program determines the position in homogeneous clip space of the vertex, and can also
modify or generate the color and texture coordinate attributes. The GeForce 6
processors have up to 6 vertex engines that all run in parallel. Each vertex engine

1 A fragment is similar to a pixel, but also contains state such as position, depth, color, texture coordinates,
and other attributes

Copyright (c) 2005, NVIDIA Corporation. All rights reserved

executes up to 5 math operations (float4 + float) per cycle. In addition, the vertex
engines are able to sample from 4 texture maps. The instruction set is similar to many
SIMD extensions found in modern CPUs.? Programs can be up to 512 instructions in
length, though up to 64k instructions can execute (by looping).

Below the vertex engines, the vertices are reconstructed into quads, triangles, points, or
lines, which a rasterizer then breaks into fragments.

Fragment (pixel) processing pipeline

These fragments are then fed into the programmable fragment engines. The purpose of
these engines is to determine a final color (or colors®) for the fragment. The fragment
engines can also optionally modify the fragment’s depth. The GeForce 6 processors
have up to 16 fragment engines on each chip, to support a maximum throughput of up
to 16 fragments per clock.

The instruction set is similar to that of the vertex engines, though there are some
differences between the two instruction sets.* However, the fragment engines perform
quite differently from the vertex engines. The fragment engines are more optimized for
accessing texture maps, and have a more robust texture caching system. The execution
units are also quite different; it is possible to execute up to 12 math operations (3 *
float4) per fragment engine per clock. Programs may be up to 2048 instructions in
length, though up to 64k instructions can execute (by looping).

Raster Ops (ROP)

The last stage of the pipeline is the ROP. These units grab the output colors from the
fragment engines, coalesce the data into memory-word-sized chunks, and then blend
this data into the frame buffer, if the fragment passes depth and stencil tests. Many

2 For more info, see the ARB_vertex_program OpenGL extension specification at
http://www.nvidia.com/dev_content/nvopenglspecs/GL _ARB vertex program.txt

% GeForce 6 supports writing up to 4 colors to 4 separate buffers, per-fragment. For more info, see the
ARB_draw_buffers OpenGL extension specification at
http://www.nvidia.com/dev_content/nvopenglspecs/GL. ARB draw buffers.txt

4 For more info, see the NV_fragment_program?2 OpenGL extension specification at
http://www.nvidia.com/dev_content/nvopenglspecs/GL NV fragment program?2.txt

Copyright (c) 2005, NVIDIA Corporation. All rights reserved

http://www.nvidia.com/dev_content/nvopenglspecs/GL_ARB_vertex_program.txt
http://www.nvidia.com/dev_content/nvopenglspecs/GL_ARB_draw_buffers.txt
http://www.nvidia.com/dev_content/nvopenglspecs/GL_NV_fragment_program2.txt

Single
Single Texture
Core Mtri/sec Mvert/sec Texture Fill per-
Clk Mem Clk per-year per-year Fill year
Year Product (Mhz) (Mhz) Mtri/sec Increase Mvert/sec Increase Mpix/sec Increase
1998 Riva ZX 100 100 3 - 1 - 100 -
1999 Riva TNT2 175 200 9 300% 2 200% 350 350%
2000 GeForce2 GTS 166 333 25 278% 24 1186% 664 190%
2001 GeForce3 200 460 30 120% 33 141% 800 120%
2002 GeForce4 Ti 4600 300 650 60 200% 100 300% 1200 150%
2003 GeForce FX 500 1000 167 278% 375 375% 2000 167%
2004 GeForce 6800 Ultra 425 1100 170 102% 638 170% 6800 340%
Increase over 6 years 56.7 637.5 68.0

Table 1: Growth of various performance metrics from 1998 - 2004

blend modes are available, but this unit is not programmable in the same way as the
vertex and fragment units.

Strengths of the 3D pipeline

Since 2000, the amount of horsepower applied to processing 3D vertices and fragments
has been growing at a staggering rate (see Table 1).

This trend is likely to continue, for as long as new applications demand more
performance.

The texture mapping hardware provides for very fast mag-/minification of images, as
well as arbitrary rotation, shearing, and other distortions. Many texture formats are
supported (including YCbCr formats, in some GPUs), though palettized formats are no
longer directly supported in many 3D graphics pipelines.

The blending modes are flexible, and become more flexible with each new generation of
GPU. Standard alpha blending (a * src + (1- o) * dst) is supported, as well as over 100
other blending modes.

The programmability of the vertex and fragment engines also allows for huge flexibility
in the types of effects. Everything from eye-candy transitions, to per-window gamma
adjustments and color space conversions are possible.

Challenges with layering a windowing system on a 3D pipeline

There are numerous challenges which must be overcome by a windowing system
design, if it hopes to integrate well with the 3D pipeline.

Copyright (c) 2005, NVIDIA Corporation. All rights reserved

Resource Management

Today, it is not uncommon for a 3D application to greedily consume video memory
with requested textures and geometry. For a full-screen game like Quake or Doom,
this might not be a problem, as no other applications should need access to video
memory. But when an application is running within a window, the system must
facilitate applications cooperatively sharing video memory.

Maintaining interactivity

The 3D pipeline is designed for high throughput, but is not typically optimized for low
latency. It is now possible to create very simple 3D geometry which, when run through
complex programs, can run for many seconds to draw just one triangle. Careful
planning is needed to ensure that the desktop can remain responsive in these situations.
Synchronization between the CPU and completion of some rendering operations also
needs to be properly architected.

Backward compatibility

Several features are difficult to emulate when rendering through a 3D pipeline and
compositing desktop system. For example, video overlays can not be used, since other
layers may need to be rendered above the video YUV data. Another example is the
“feature” on some operating systems that requires that console messages be rendered
onto the server’s attached display, even if X is running. These messages are rendered
by FCODE which must be made aware of the possible double-buffering of X.

Best performance comes from a full pipeline

Typically, the best performance is achieved when 3D pipeline state changes can be
amortized across the rendering of many primitives and many pixels. Performance can
be several orders of magnitude below peak in cases where applications change state too
frequently.

Conclusion

Obviously, several modern platforms exist already which prove that it is possible to
build an interactive, flexible, and attractive windowing system. But moving to the 3D
pipeline is not a panacea; there are many new challenges that must be overcome in
order to design a successful 3D-based windowing system. NVIDIA is very interested in
participating in this process. We look forward to collaborating with you in designing
and implementing this new system.

Copyright (c) 2005, NVIDIA Corporation. All rights reserved

	Windowing System on a 3D Pipeline
	How 3D primitives are drawn
	Vertex processing pipeline
	Fragment (pixel) processing pipeline
	Raster Ops (ROP)
	Strengths of the 3D pipeline
	Challenges with layering a windowing system on a 3D pipeline
	Conclusion

