
Best Practices for Multi-threading

Eric Young
Developer Technology



Copyright © NVIDIA Corporation 2004

Overview

Benefits of Dual-Core
NVIDIA Multi-threaded Driver

OpenGL
Direct3D

Dual-Core Performance Gains
Summary



Copyright © NVIDIA Corporation 2004

Benefits of Dual-Core

NVIDIA multi-threaded driver
Producer & Consumer threads dispatch commands to GPU
Improves parallelism between GPU/CPU
Performance gains from 10 to 40%

Application has more computation power available!
Handles even more Complex Math, Physics, and AI
Add Dual-Core optimizations to your application, and you 
can achieve up to 2X the performance
Best combination: 

Application has Dual-Core optimizations 
Running with the multi-threaded driver!



Copyright © NVIDIA Corporation 2004

OpenGL on Dual-Core

Both OpenGL runtime and driver can be 
completely offloaded

Application gains 20 to 40% performance

Driver can dynamically switch between 
multi-thread and single-thread mode



Copyright © NVIDIA Corporation 2004

OpenGL Performance Tips

Immediate mode for small amounts of vertex data
glVertex3f(x, y, z)

VBO(s) & Display Lists for large amounts of Vertex 
Data

Avoid passing Vertex Pointers
Driver will need to copy extra data
Use Buffer Objects instead for better performance

When using VBOs, use element array buffers 
glBindBufferARB(GL_ELEMENT_ARRAY_BUFFER_ARB, 

index_buffer);



Copyright © NVIDIA Corporation 2004

OpenGL Performance Tips (contd.)

Avoid glGetXXX calls or Driver Queries
CPU Thread synchronization needed
Release builds should not have many glGetError() calls

Do not lock application threads to single CPU
OS can do a better job scheduling CPU resources

Avoid using Vertex Arrays without Buffer Objects
Requires a data copy from pointer for every call
Driver will have to wait until it is finished using data



Copyright © NVIDIA Corporation 2004

Direct3D on Dual-Core

Also uses Producer & Consumer threads

Only driver can be offloaded onto the second CPU
Note: Direct3D runtime runs in the application thread

10 to 30% performance gains with a multi-threaded 
NVIDIA driver



Copyright © NVIDIA Corporation 2004

Direct3D Performance Tips

Pack your DrawPrimitive2 calls together

Frequently creating & destroying shaders, VB, IB, and 
surfaces will impact performance

Avoid allocating too many system memory resources

Minimize use of any locks/unlocks

Avoid any calls that return GPU state information
Requires a CPU thread synchronization 
Driver Queries are OK (calls are asynchronous)

Do not lock threads to a specific CPU!



Copyright © NVIDIA Corporation 2004

0%

5%

10%

15%

20%

25%

30%

35%

FP
S 

Pe
rfo

rm
an

ce
 Im

pr
ov

em
en

t (
%

)

FarCry
Research

(D3D)

FarCry
Regulator

(D3D)

FarCry
Training (D3D)

FarCry
Volcano (D3D)

Serious Sam 2
(D3D)

Serious Sam 2
(D3D)

Quake4
(OpenGL)

Doom3
(OpenGL)

Total Gains with Dual-Core



Copyright © NVIDIA Corporation 2004

Summary

NVIDIA multi-threaded drivers available now
Download drivers from http://www.nvidia.com

On a dual-core system 10 to 40% improvement

Avoid any API calls that return driver state

Do not lock application threads to a specific CPU

Applications optimized for dual-core will get 
even better performance

We will continue to improve dual-core driver 
performance

http://www.nvidia.com/


Copyright © NVIDIA Corporation 2004


	Best Practices for Multi-threading
	Overview
	Benefits of Dual-Core
	OpenGL on Dual-Core
	OpenGL Performance Tips
	OpenGL Performance Tips (contd.)
	Direct3D on Dual-Core
	Direct3D Performance Tips
	Total Gains with Dual-Core
	Summary

