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Benefits of Dual-Core

NVIDIA multi-threaded driver
Producer & Consumer threads dispatch commands to GPU
Improves parallelism between GPU/CPU
Performance gains from 10 to 40%

Application has more computation power available!
Handles even more Complex Math, Physics, and AI
Add Dual-Core optimizations to your application, and you 
can achieve up to 2X the performance
Best combination: 

Application has Dual-Core optimizations 
Running with the multi-threaded driver!
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OpenGL on Dual-Core

Both OpenGL runtime and driver can be 
completely offloaded

Application gains 20 to 40% performance

Driver can dynamically switch between 
multi-thread and single-thread mode
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OpenGL Performance Tips

Immediate mode for small amounts of vertex data
glVertex3f(x, y, z)

VBO(s) & Display Lists for large amounts of Vertex 
Data

Avoid passing Vertex Pointers
Driver will need to copy extra data
Use Buffer Objects instead for better performance

When using VBOs, use element array buffers 
glBindBufferARB(GL_ELEMENT_ARRAY_BUFFER_ARB, 

index_buffer);
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OpenGL Performance Tips (contd.)

Avoid glGetXXX calls or Driver Queries
CPU Thread synchronization needed
Release builds should not have many glGetError() calls

Do not lock application threads to single CPU
OS can do a better job scheduling CPU resources

Avoid using Vertex Arrays without Buffer Objects
Requires a data copy from pointer for every call
Driver will have to wait until it is finished using data
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Direct3D on Dual-Core

Also uses Producer & Consumer threads

Only driver can be offloaded onto the second CPU
Note: Direct3D runtime runs in the application thread

10 to 30% performance gains with a multi-threaded 
NVIDIA driver
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Direct3D Performance Tips

Pack your DrawPrimitive2 calls together

Frequently creating & destroying shaders, VB, IB, and 
surfaces will impact performance

Avoid allocating too many system memory resources

Minimize use of any locks/unlocks

Avoid any calls that return GPU state information
Requires a CPU thread synchronization 
Driver Queries are OK (calls are asynchronous)

Do not lock threads to a specific CPU!
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Summary

NVIDIA multi-threaded drivers available now
Download drivers from http://www.nvidia.com

On a dual-core system 10 to 40% improvement

Avoid any API calls that return driver state

Do not lock application threads to a specific CPU

Applications optimized for dual-core will get 
even better performance

We will continue to improve dual-core driver 
performance

http://www.nvidia.com/
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