

Whitepaper

An Overview of the NVIDIA
UNIX Graphics Driver

Andy Ritger
NVIDIA Corporation
XDevConf 2006

v01 i
02/08/2006

Abstract

The NVIDIA UNIX Graphics Driver provides a wide spectrum of features and capabilities
to users of NVIDIA hardware on Linux, Solaris, and FreeBSD. This paper provides an
overview of the NVIDIA UNIX Graphics Driver, its components, features, and how it and
how it coordinates direct-rendering OpenGL. Issues of ABI and API are discussed and
relevant suggestions are made. Lastly, we describe how direct-rendering OpenGL might
interact with a composited X desktop.

Andy Ritger
aritger@nvidia.com

NVIDIA Corporation
2701 San Tomas Expressway
Santa Clara, CA 95050

February 8, 2006

v01 1
02/08/2006

An Overview of the NVIDIA UNIX
Graphics Driver

The function of a hardware graphics driver is to provide interfaces by which programs that
require computer rendering may leverage processing power of specially designed graphics
processing units (GPUs). Rendering performed on dedicated graphics hardware is typically
significantly faster than rendering operations performed on a computer's general purpose
Central Processing Unit (CPU). Fast rendering is desirable for real-time simulations, gaming,
computer-aided design, cinematic production, and to drive dramatic and compelling user
interfaces.

The NVIDIA UNIX Graphics Driver provides a wide spectrum of features and capabilities
to users of NVIDIA hardware on Linux, Solaris, and FreeBSD. Here we provide an
overview of the NVIDIA UNIX Graphics Driver, its components, features, and how it
coordinates direct-rendering OpenGL. We discuss various engineering challenges, current
ABI and API issues, and resolutions to these problems. One of the newer compelling
features of windowing systems is support for a composited desktop environment. We
describe how direct-rendering OpenGL might interact with a composited X desktop.

The NVIDIA UNIX
Graphics Driver

The code base for the NVIDIA graphics driver leverages the majority of the source code
across all the operating systems we support. Everything that is specific to a particular
operating or windowing system is abstracted behind interface layers. In other words, the core
OpenGL driver source code is used on Microsoft Windows, Linux, Solaris, FreeBSD, and
Mac OS X. Similarly, most of the code for the NVIDIA kernel module is common across all
of those operating systems.

NVIDIA's graphics drivers support all of its GPUs dating back to GeForce 2 MX [1]. Built-
in hardware compatibility coupled with software to manage GPU differences allow us to
maintain a single driver that supports several generations of GPUs.

An Overview of the NVIDIA UNIX Graphics Driver

v01 2
02/08/2006

NVIDIA's marketing uses the term "Unified Driver Architecture" to refer both to one driver
for all NVIDIA GPUs, and one driver code base to support all of our operating systems.

The NVIDIA UNIX Graphics Driver is provided for:

 Linux-x86
 Linux-x86_64
 FreeBSD-x86
 Solaris-x64/x86

The UNIX operating systems and architectures we support are based primarily on the
interests of our customers and end-users.

The NVIDIA UNIX Graphics Driver consists of the following components:

 A kernel module (nvidia.ko): responsible for all resource management, DMA setup,
allocation of system memory and video memory, servicing of interrupts, thermal
monitoring, GPU clock management, and all things related to managing of the GPU. All
other NVIDIA driver components are viewed as clients of the kernel module's resource
management.
The kernel module consists of a binary-only portion and a kernel interface layer (aka
"shim"). The source code to the shim is distributed with the driver and is the only portion
of the kernel module that directly accesses OS kernel interfaces or even includes OS kernel
header files. In the case of Linux and FreeBSD, this shim must be compiled specifically
for the version and configuration of the user's kernel. In the case of Solaris, there is a
kernel driver ABI, so one shim works across all kernel versions.

 An implementation of OpenGL (libGL.so): this library provides the API entry points for
OpenGL and GLX function calls. It is linked to at run-time by OpenGL applications.
The OpenGL library either performs direct-rendering to the GPU (through a DMA
command buffer allocated on its behalf by the NVIDIA kernel module), or sends GLX
protocol requests to a server-side GLX implementation.

 An X.Org loadable driver module (nvidia_drv.so): responsible for all X rendering,
modesetting, configurability through the NV-CONTROL X extension, GLX
visual/FBConfig management, and buffer allocation on behalf of OpenGL clients (both
direct and indirect). As with libGL.so, the NVIDIA X driver submits its rendering
requests to the GPU through a DMA command buffer allocated by the NVIDIA kernel
module.

 An X.Org loadable module (libglx.so): provides an implementation of the GLX X
extension. The libglx.so and libGL.so libraries share a common core rendering library for
GPU programming to hardware-accelerate OpenGL indirect-rendering.

 Assorted utilities licensed under the GPL:
 nvidia-installer: utility for installing, upgrading, and uninstalling the NVIDIA

graphics driver.

An Overview of the NVIDIA UNIX Graphics Driver

v01 3
02/08/2006

 nvidia-settings: gtk-based configuration tool that communicates with the NVIDIA
X driver via the NV-CONTROL X extension to dynamically configure various
parameters of the NVIDIA driver.

 nvidia-xconfig: commandline tool for manipulating xorg.conf files.

These components are packaged together and distributed as the NVIDIA UNIX Graphics
Driver.

Features Provided by
the NVIDIA UNIX
Graphics Driver

The NVIDIA UNIX Graphics Driver provides numerous features.

 Hardware-accelerated direct and indirect OpenGL/GLX rendering.
 Support for TwinView: one X screen with multiple display devices (CRTs, DFPs, TVs)

scanning out arbitrary portions of the X screen. There are several advantages to
TwinView over traditional Xinerama (e.g., it is one root window in video memory -- all
rendering spans all display devices "for free"). However, it breaks the "one display device
per X screen" model and introduces some grey areas (e.g., what is the DPI when in
TwinView? How to deal with different non-rectangular layouts?). All of NVIDIA's
modern GPUs support multiple display devices from one GPU, and we find TwinView to
be a very popular feature. Other drivers have similar support and call this "MergedFB".

 Support for multiple X screens on one GPU: this is an alternative to TwinView, in which
multiple root windows can be allocated on the same GPU, and each display device can
scan out a different one. Some people prefer this alternative because it alleviates some of
the ill-defined corner cases with TwinView. Also, multiple X screens allow one to
advertise different capabilities on each X screen (e.g., Workstation Overlays on one, Quad-
Buffered Stereo on another, etc.).

 Support for direct-rendered OpenGL with Xinerama: OpenGL rendering spans and
migrates between physical X screens as one drags the windows around the Xinerama root
window. This is especially popular with high-end workstation customers driving power
walls or CAVE labs.

 Configurability: the NVIDIA driver has a large number of options that can be controlled
through X configuration file options. Many more options can be controlled dynamically
through the NV-CONTROL X extension. NV-CONTROL clients, such as nvidia-
settings, can query and set NV-CONTROL attributes to affect the behavior of the X
driver and OpenGL.

 Quad-Buffered Stereo: another popular feature with workstation customers. OpenGL
applications can separately render images for left and right eyes. This allows the driver to
flip between left and right eye images on subsequent vertical refreshes. Stereo goggles are

An Overview of the NVIDIA UNIX Graphics Driver

v01 4
02/08/2006

synced with the driver's stereo flipping, so the user's left eye only sees the left image, and
the user's right eye only sees the right image.

 RGB/CI Overlays: another popular workstation feature (utilized by applications like
Maya[2]) is rendering to drawables in the overlay plane, which does not damage rendering
already present in the main plane. This does not cause expose events to drawables in the
main plane. Typically, user interface elements are drawn into the overlay while a
complicated scene is rendered to the main plane. The user-interface elements can be
changed without requiring re-rendering of the main plane's scene.

 FrameLock: NVIDIA offers several high-end workstation boards (Quadro G-Sync, and
the older Quadro FX 3000G) to allow locking multiple displays together (on different
GPUs, possibly in different systems), such that their Vertical Refreshes occur
simultaneously. This requires use of the NV-CONTROL extension to configure the
FrameLock hardware. Then the GLX_NV_swap_group extension can be used by
applications to request that applications running on different systems in this FrameLock
group have their swaps locked together. This is a compelling feature for powerwalls and
CAVEs.

 SDI: another set of high-end specialty workstation boards, NVIDIA's SDI products allow
users to output GPU data over SDI (Serial Digital Interface) a video format commonly
used in the broadcast industry. SDI can be 8, 10, or 12-bit per component, and requires
special repacking of pixels by the NVIDIA driver. There is also a GLX_NV_video_out
extension to allow applications to send their pbuffers directly to the SDI output.

 SLI: this feature allows multiple GPUs to be joined together to drive a single X screen.
SLI can be configured such that each GPU renders horizontal swaths of each frame (Split
Frame Rendering), or each GPU renders alternate frames (Alternate Frame Rendering), or
each GPU renders a differently sampled version of the scene, and the results are filtered
together for improved AntiAliasing (SLIAA).

 XVideo, XvMC: The NVIDIA X driver provides various Xv adaptors and an XvMC
implementation for hardware-accelerated mpeg decode.

The above features require special support from the X driver beyond the traditional X
rendering and modesetting responsibilities of an X.Org loadable X driver module.

How a Direct-Rendering
Client Interacts with
the X Window System

In traditional X rendering, X clients send protocol to the X server to request a rendering
operation, and the X server performs that rendering on behalf of the X client. In addition to
network transparency, another benefit of that model is synchronization, all rendering requests
are serialized through the X server. Rendering commands are submitted to the hardware in
the order that the X server processes the X protocol requests.

An Overview of the NVIDIA UNIX Graphics Driver

v01 5
02/08/2006

The GLX X extension (the interface between X windows and OpenGL), operates using the
same paradigm: a GLX client sends GLX protocol requests to an X server that advertises the
GLX extension, and the X server will perform the OpenGL rendering on behalf of the client.

However, common OpenGL usage patterns suffer from the inter-process communication
overhead of sending GLX protocol to the X server. Often, OpenGL applications will
manage very large quantities of data, such as textures, or will make many API calls (e.g.,
glVertex3f() for each vertex in a scene with millions of vertices per frame). In these cases,
transferring large quantities of data or making many protocol requests is suboptimal.

When the GLX client is running on the same system as the X server, it is desirable for the
OpenGL client-side library to optimize rendering by submitting rendering commands directly
to the GPU. This is called OpenGL direct-rendering, in contrast to indirect-rendering where
GLX protocol is sent to the X server and the X server submits the rendering commands to
the GPU [3].

It is worth noting that the idea of direct-rendering OpenGL is nothing new. Direct-rendering
OpenGL has its roots in the UNIX workstations of the 1990s. See [4], [5], and [6] for more
historical perspective.

Additionally, it is worth distinguishing between OpenGL hardware-acceleration and direct-
rendering. Hardware-acceleration refers to using the GPU to perform some or all of the
OpenGL rendering pipeline, while direct-rendering is as described above: the OpenGL client
library bypasses the X server and submits rendering commands directly to the GPU.
NVIDIA's UNIX Graphics Driver supports hardware-acceleration of both indirect and direct
OpenGL rendering.

An OpenGL direct-rendering implementation must coordinate closely with the X driver and
server-side GLX implementation in the X server for several reasons: the direct-rendering
client must be told where to render and certain synchronization must be performed to ensure
that the direct-rendering client only renders where it is supposed to when it is safe to do so.

Data Propagation
Data describing a drawable's geometry, clips, and other attributes must be propagated from
the X server to the OpenGL direct-rendering client.

The ValidateTree(), ClipNotify(), and PostValidateTree() pScreen procs are wrapped so that
we can track changes to drawables to which OpenGL is rendering. These changes are
processed and fed (in the NVIDIA case, through shared memory) to the OpenGL direct-
rendering clients.

Because OpenGL direct-rendering clients are running asynchronously to the X server they
cannot be notified directly of window change events. Instead OpenGL clients will look for
drawable updates when performing operations that must be done with an up-to-date view of
the window system. If the drawable data in the shared memory segment is newer than the
data OpenGL has, OpenGL will retrieve this new data and update its state accordingly.

Note that OpenGL rendering, like all rendering in X, is clipped to the pixels within the visible
portion of the window to which rendering is targeted.

An Overview of the NVIDIA UNIX Graphics Driver

v01 6
02/08/2006

Synchronization
In NVIDIA's OpenGL driver model, each direct-rendering OpenGL client fills its command
buffer asynchronously to the X driver and any other OpenGL clients. When those rendering
commands are ready to be submitted to the GPU, the OpenGL library locks out the X driver
from changing any relevant windows, checks that OpenGL is up-to-date with the drawable
data in the shared memory segment, and finally submits the rendering commands to the
GPU.

Appropriate synchronization must be performed to ensure the integrity of the data getting
propagated through shared memory (e.g., OpenGL cannot read the data from shared memory
while X is half-way through updating it). Additionally, synchronization must be performed to
ensure correct ordering of GPU rendering commands between the NVIDIA X driver and
OpenGL.

A traditional GPU has a single command buffer which all graphics drivers (X, OpenGL, etc)
must share. This sharing requires synchronization to ensure that different drivers do not
trash each other's state and that all writes to the command buffer are atomic.

In contrast, NVIDIA GPUs accept input from multiple command buffers (each graphics
driver gets its own command buffer). The hardware context switches between command
buffers and virtualizes the rendering resources. This eliminates the software problem of
synchronizing a single command buffer, but the tradeoff is the need for the drivers to
coordinate to ensure correct ordering of GPU commands when necessary.

For example: consider the case of two OpenGL clients, each rendering to separate windows,
the order that the GPU processes each OpenGL's command buffer is not critical (the order
that the two OpenGL clients' rendering becomes visible does not affect correctness).
However, in the case of a window move, the ordering between the X server's commands to
move the window contents and OpenGL's rendering commands does matter, so that the
correct OpenGL rendering lands properly in the new window position. If this is not handled
properly, OpenGL rendering could scribble on pixels no longer within the bounds of the
visible portion of the window.

NVIDIA GPUs have various means to perform inter-command buffer synchronization. The
details of those means will not be described here, and is an implementation detail that should
be transparent to the rest of the system. However, the concept is important, because it is
relevant to cases in which one client's rendering is read by another client. Examples of this
include: direct-rendering OpenGL clients rendering to redirected windows, or X rendering to
pixmaps that are used as textures through the proposed GLX_EXT_texture_from_pixmap
GLX extension.

Whether the OpenGL direct-rendering client is rendering to an on-screen window, a pixmap,
pbuffer, or redirected X window, the same principles of data propagation and
synchronization apply.

An Overview of the NVIDIA UNIX Graphics Driver

v01 7
02/08/2006

Interactions between
Rendering and Scanout

When a double-buffered OpenGL application has completed rendering to its backbuffer, it
calls glXSwapBuffers() to copy the content from the backbuffer to the visible frontbuffer.
With NVIDIA hardware, this can be accomplished by “blitting” or by “flipping”. While a blit
is effectively a memcpy, flipping is a technique in which the scanout hardware in the GPU is
pointed at a different region of video memory. To flip, we scanout from the backbuffer,
making it the new logical frontbuffer, and what was the front buffer, is now the backbuffer.
Flipping is more efficient than blitting, so it is preferable to do so whenever possible.

It is worth noting that current NVIDIA GPUs can only scanout contiguous regions of video
memory. This means that we can only flip the entire desktop, not just windows within that
desktop. Thus, to support flipping of windowed applications, we use unified buffers and
keep all of the desktop content the same between buffers, such that only the OpenGL
content within the window is different between buffers. There are clearly performance
tradeoffs to be made here.

While performance may be the only motivation for flipping with basic OpenGL SwapBuffers,
it is a necessity for other functionality. Quad-Buffered Stereo, for example, requires that the
GPU flip between left and right images on every Vertical Refresh.

Flipping is an example of the grey area between rendering and scanout. It is a common
misconception that rendering and scanout are orthogonal. In an ideal world this would be
true. In practice, there are many areas of overlap:

 The rendering driver needs to control what portion of video memory is scanned out in
order to support flipping.

 Syncing OpenGL rendering to Vertical Refresh requires coordination between scanout
and rendering.

 Whether a video memory allocation will be scanned may impact how that video memory is
configured and formatted.

 Filtering for anti-aliasing can in some cases be performed by scanout hardware for better
performance; these situations require coordination between scanout and rendering.

 SLI (SFR, AFR, SLIAA) introduces complex interactions between rendering and scanout.
 Frame delivery for video is very time-sensitive, and precise control in the driver of when

to display the frame is crucial; this is often accomplished with flipping.

Video Memory
Though modern graphics cards usually are packaged with large quantities of video memory,
there are caveats: not all video memory may be accessible by the CPU. We can quickly
exhaust limited BAR1 space allocated by the SBIOS, so we typically only map a smaller

An Overview of the NVIDIA UNIX Graphics Driver

v01 8
02/08/2006

portion of video memory. Ideally, we would map buffers in video memory individually and
map those buffers on demand, to conserve BAR1 space.

Some newer NVIDIA GPUs support rendering to system memory over the PCI-E bus.
Marketing has branded this "TurboCache". This memory is CPU mappable, but GPU
rendering is slower because it has to travel across the PCI-E bus.

The layout of video memory may not be linear. The organization of bits within video
memory is optimized for cache use for both rendering to and texturing from video memory.
A video memory buffer that is setup for hardware rendering/texturing may require expensive
work to transition such that the buffer can be mapped linearly and rendered to by the CPU.

When transitioning from GPU rendering to CPU rendering, synchronization must be
performed such that all GPU rendering is complete before the CPU can read from that
memory. Thrashing between CPU and GPU rendering is undesirable due to the overhead of
this synchronization.

There can be many different attributes to the memory used by the graphics system. Selecting
the optimal placement of data in the correct memory space with the correct memory layout is
non-trivial and can be best performed when the driver has knowledge of how that data is
going to be used.

ABI Compatibility and
API Compatibility

NVIDIA provides a single X driver that our customers expect to work with any version of
the XFree86 or X.Org X servers they choose to use. Thus, we depend on ABI compatibility
and dynamic loading of symbols that were added in newer X servers. For over 5 years,
XFree86 and X.Org have not broken ABI compatibility, with only a few minor exceptions.

We understand that there are reasons that the ABI may need to be broken (such as making
the maximum number of X Screens dynamic, eliminating the MAXSCREENS definition) and
from our perspective that is fine. NVIDIA can update its X driver or provide multiple copies
of the X driver built for different ABI versions as necessary.

Here are a few suggestions for ABI compatibility, though:

 Breaking ABI compatibility is not only painful for 3rd party vendors such as NVIDIA, but
also anyone trying to distribute a driver separately from the X server tree. It was our
understanding that with the Modular X tree, separate distribution of X drivers would
become more prevalent. If that is the case, then breaking ABI compatibility will be painful
for OS distributors and all driver maintainers. Therefore, we recommend breaking the
ABI infrequently and only when absolutely necessary.

 In many cases, it may be preferable to add a new entry point and deprecate the old one
rather than simply changing the old entry point. This gives driver maintainers an
opportunity to phase in the new support.

 Be sure to change the ABI version number appropriately when altering the ABI.

An Overview of the NVIDIA UNIX Graphics Driver

v01 9
02/08/2006

 Please make it possible at both run time and install time for a 3rd party vendor to query
the ABI version.

 Please try to minimize how often the ABI is broken, and thus minimize the number of
incompatible driver versions that need to be maintained by driver maintainers. If there are
several ABI breakages pending, it may be beneficial to put them in the tree at roughly the
same time.

 If the ABI is going to be broken or extended anyway, it is worth designing a new API that
properly solves the problem. Several cases that come to mind are glyph management and
the Xv interface.

OpenGL and the
Damage and Composite
X Extensions

The Damage and Composite model works well for compositing windows that were rendered
to by X (see [7] for background on the Damage and Composite X extensions). However, it
introduces new challenges for direct-rendering clients such as OpenGL and XvMC. See
above for a detailed description of how a direct-rendering client fits into the X window
system.

Direct-rendering clients will need to know when their drawable has been redirected. They
will need to notify the X server when they have damaged the drawable, so that the X server
can then notify the composite manager who can then request that drawable be composited
back into the desktop.

There are also synchronization issues between the graphics channel performing the direct-
rendering and the graphics channel used to perform the compositing.

These topics have been discussed in more detail in this email thread:
 http://lists.freedesktop.org/archives/xorg/2004-May/000607.html

To the best of our knowledge, as of this writing, no vendor has shipped a direct-rendering
OpenGL implementation that can interoperate with the Damage and Composite extensions.
The closest has probably been Xgl [8], though in that case all OpenGL rendering is indirect.

These are not impossible problems to solve, but vendors need to solve these problems within
their drivers. NVIDIA intends to provide an OpenGL implementation that can interoperate
with Damage and Composite.

The overhead will be noticeable for a direct-rendering OpenGL implementation to
synchronize with the X server so that OpenGL content can be properly composited. Most
severely impacted will be applications with a high frame rate, as well as applications that
render to the front buffer. There will also be increased latency between when OpenGL
rendering is performed, and when that rendering finally becomes visible when it is
composited into the desktop.

An Overview of the NVIDIA UNIX Graphics Driver

v01 10
02/08/2006

One of the most important things about the Damage and Composite model is that it provides
the flexibility to disable the composite manager so that windows are no longer redirected, and
no longer require the extra step of being composited into the desktop. This is very important
for many workstation users who require full performance OpenGL, and value this full
performance over the special effects possible through Damage and Composite. It is our hope
that composite managers provide a way to dynamically disable compositing so that users can
make the tradeoffs themselves between full performance OpenGL and a composited desktop
with a modest performance impact.

Additionally, it is not immediately clear how features like Quad-Buffered Stereo or
Workstation Overlays interoperate with Damage and Composite. It is possible that NVIDIA
will not be able to support stereo flipping when the stereo drawable has been redirected to
off-screen memory. Workstation Overlays with Damage and Composite would likely require
additional support in the X.org X server, if not also in the composite manager. Users of
Quad-Buffered Stereo or Workstation Overlays may need to disable the composite manager
(if not completely disable the Composite extension) when they require these special
workstation features. More investigation is needed in this area.

Conclusion
The NVIDIA UNIX Graphics Driver provides a wide spectrum of features and capabilities
to users of NVIDIA hardware on Linux, Solaris, and FreeBSD. This paper provided an
overview of the NVIDIA UNIX Graphics Driver, its components, its features, and how it
coordinates direct-rendering OpenGL. Issues of ABI and API were discussed and relevant
suggestions were made. Lastly, we described how direct-rendering OpenGL might interact
with a composited X desktop.

v01 11
02/08/2006

End Notes

[1] The NVIDIA unified graphics driver supports all NVIDIA GPUs, though we
have phased out support for our oldest GPUs, due to maintenance and testing
costs. The oldest GPUs are instead supported through a separate dedicated
"legacy" driver branch, which does not pick up new features, and only receives
fixes for critical bugs that affect those legacy GPUs.

[2] Autodesk. Online Resources: Maya, February 2006.
http://www.alias.com/glb/eng/products-
services/family_details.jsp?familyId=3900009

[3] There can be other direct-rendering clients besides OpenGL, such as XvMC.
This paper focuses on OpenGL, but the same direct/indirect-rendering model
applies to any direct-rendering client.

[4] Mark J. Kilgard, Simon Hui, Allen A. Leinwand, and Dave Spalding. Multi-
rendering for OpenGL and PEX. X Technical Conference, January 25, 1994.

[5] Mark J. Kilgard, David Blythe, and Deanna Hohn. System Support for OpenGL
Direct Rendering. Graphics Interface 1995.

[6] Mark J. Kilgard. The Silicon Graphics X Server, IRIX 4.0.5. The X Journal, SIGS
Publications, January 1993.

[7] Andy Ritger. Using The Existing XFree86/X.Org Loadable Driver Framework To
Achieve a Composited X Desktop. XDevConf 2006.

[8] David Reveman. Online Resources: Xgl, February 2006.
http://www.freedesktop.org/wiki/Software_2fXgl

NVIDIA Corporation
2701 San Tomas Expressway
Santa Clara, CA 95050
www.nvidia.com

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”)
ARE BEING PROVIDED “AS IS." NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED,
STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS
ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A
PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation
assumes no responsibility for the consequences of use of such information or for any
infringement of patents or other rights of third parties that may result from its use. No license is
granted by implication or otherwise under any patent or patent rights of NVIDIA Corporation.
Specifications mentioned in this publication are subject to change without notice. This
publication supersedes and replaces all information previously supplied. NVIDIA Corporation
products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, GeForce 2 MX, and TwinView are trademarks of NVIDIA Corporation.

UNIX is a registered trademark of The Open Group. Linux is a registered trademark of Linus
Torvalds. Solaris is a registered trademark of Sun Microsystems, Inc. FreeBSD is a registered
trademark of The FreeBSD Foundation. Microsoft and Windows are registered trademarks of
Microsoft Corporation. Mac OS X is a trademark of Apple Computer, Inc. OpenGL is a
trademark of SGI. Other company and product names may be trademarks of the respective
companies with which they are associated.

Copyright

Copyright NVIDIA Corporation 2006

