ForceWare Graphics Driver

User’s Guide

Driver Version: 71.84 for Windows
NVIDIA Corporation
March 2005
Table of Contents

1. Introduction
- About this Guide ... 11
- Other Related Documentation 12
- Online Help .. 12
- Context Help ... 12
- NVIDIA Display Properties and nView Desktop Manager .. 13
- Release 70 Enhancements 13
 - Support for Newest GeForce 6 Series GPUs 13
 - Improved Video Functionality 14
 - New Setup Wizards 14
 - Desktop Manager Wizard Improvements 14
 - Control Panel Interface Improvements 14
 - New Feature and Enhancement Details by Driver Module .. 14
 - Display Driver, DirectX, and OpenGL 15
 - Video .. 15
 - NVIDIA Display — Enhancements and New Features .. 16
 - nView Desktop Manager — New & Enhanced Features .. 17

3. System Requirements
- Supported Operating Systems 19
 - Minimum Hard Disk Space 20
 - Additional Operating System Requirements 21
- Software — NVIDIA Graphics Driver 21
- Hardware — Supported NVIDIA Products 21
- Supported Languages 24
- Notes on Feature and Configuration Support 24
 - Feature Support 24
 - Examples in this Guide 25

3. NVIDIA ForceWare Graphics
- Display Driver — Feature History 26
 - Driver Release History 26
 - Release 70 Enhancements 27
 - Release 65 Enhancements 27
 - SLI Support ... 27
 - 512 MB Frame Buffer Support 28
 - Multi-GPU Support 28
 - Operating System Support 28
 - Enhancements in Driver Performance 29
 - Improved Robustness 29
 - Video Enhancements 29
 - 3D Graphics API Enhancements 29
 - HDTV Support Enhancements 29
 - Desktop Manager and Control Panel Improvements .. 30
 - Release 60 Enhancements 30
 - Latest GPU Support 30
 - PCI Express Support 30
 - Enhancements in Driver Performance 30
 - 3D Graphics API Enhancements 31
 - Direct3D .. 31
 - OpenGL .. 31
 - Release 55 Enhancements 31
 - PCI Express Support 32
 - PAE Support ... 32
 - nView Desktop Manager Enhancements 32
 - User Interface Enhancements 32
 - Video Support Enhancements 32
 - 3D Graphics API Enhancements 33
 - Direct3D .. 33
 - OpenGL .. 33
 - Release 50 Enhancements 33
 - New Feature Highlights 33
 - 64-bit Support .. 33
 - Dynamic Memory Mapping 33
 - NVIDIA Unified Compiler 33
 - Display Driver Changes—New Features 34
 - Video — New Features 34
 - PowerMizer — New Features 34
 - User Interface Changes 34
 - nView .. 35
 - DirectX Graphics 36
 - OpenGL .. 36
 - Release 40 Enhancements 36
 - Enhanced Display Driver, DirectX, and Video Capabilities 37
 - New Graphical User Interface 37
 - Enhanced nView Desktop Manager Features 37
 - OpenGL Enhancements 38
 - Release 35 Enhancements 38
 - Release 25 Enhancements 39
 - Release 20 Enhancements 40
 - Release 10 Enhancements 40
 - Release 6 Enhancements 41
 - TwinView .. 41
 - Virtual Desktop 41

NVIDIA Corporation
User's Guide Table of Contents

Video Mirror ... 41
Desktop Manager 42
Digital Vibrance Control 42
OpenGL ... 42
Direct3D ... 42
Cursor Trails Support 42
Control Panels 43
Release 5 Enhancements 43
OpenGL ... 43
OpenGL 1.2 Core 43
OpenGL Extensions 44
OpenGL Performance Enhancements 44
Direct3D ... 45
Control Panel 45

4. NVIDIA Driver Installation and
Control Panel Access

Before You Begin 46
About the NVIDIA Graphics Driver Installation . 47
Installing the NVIDIA ForceWare Graphics
Drivers .. 47
Follow the instructions in the NVIDIA
InstallShield Wizard to complete the
installation... 47
File Locations 47
Preserving Settings Before Upgrading Your
Software .. 48
About Using Saved Profiles in Another
Computer ... 50
NVIDIA Display Setup Wizards 50
Uninstalling the NVIDIA Display Driver 51
Accessing the NVIDIA Display Control Panel Pages
52
Desktop Access 52
Shortcut to Playing Video Files on Any Display . 54
NVIDIA Settings Menu — Windows Taskbar
Access .. 55
Windows Display Properties Setting Access 56
Using the NVIDIA Display Menu 56
The NVIDIA GPU Page 58
Other NVIDIA Display Menu Items 59
Using the NVIDIA Display Menu Help and Tool Tips
60
Context Help 60
Tool Tips .. 61
Tool Tips for Disabled Settings 61

5. Using nView Multi-Display
Settings

nView Display Modes 63
nView Multi-Display Applications 65
Accessing the Display Context Menus 67
About Display Numbering 68
About Renaming Displays 69
NVIDIA Multi-Display Support 71
Primary and Secondary Displays 73
nView Display Settings 73
Windows Display Properties Settings 73
Using nView Dualview Mode 73
Key Features .. 74
Initial Installation of nView Dualview Mode —
Windows 2000 75
Enabling nView Dualview Mode After Initial
Installation — Windows 2000 78
Using nView Span Modes 78
nView Span Modes vs. Dualview Mode Features
79
Using nView Multi-View Mode — Only for NVIDIA
Quadro NVS-based Graphics Cards 89
Arranging Displays on the Settings Page 90

Switching Between nView Dualview and Span/
Clone Modes — Windows 2000 89
Enabling nView Multiview Mode — Only for NVIDIA
Quadro NVS-based Graphics Cards 89
Arranging Displays on the Settings Page 90

6. Configuring Displays

Adjusting Analog Display Settings 92
Screen Adjustment 93
Display Timing Settings 94
Adjusting Digital Display Settings 95
Digital Display Settings 95
Adjusting Television (TV) Settings 97
TV Settings .. 98
Signal Format 98
Video Output Format 99
Device Adjustments — TV Output 99
Screen Positioning 99
Brightness/Contrast/Saturation 100
Flicker .. 101
Overdrive ... 101
Overscan Shift 101
Video Border — (for HDTV) 102

NVIDIA Corporation
Notes on Startup Functionality with HDTV

Optimizing HDTV Viewing

Adjusting Desktop Colors

8. Configuring Key ForceWare Graphics Driver Features

Supported TV and HDTV Adjustment Features Based on TV Encoder and NVIDIA GPU

7. Configuring HDTV

HDTV Supported Outputs

Configuring HDTV

Using HDTV in nView Display Modes

Using HDTV as the Primary Display in nView

Using HDTV as the Secondary Display in nView

Using HDTV in nView Dualview Mode

Using HDTV Formats with HDTV Component

Using “Shift Threshold”

Using Underscan

Enabling HDTV-Over-DVI — Only for HDTVs

Connected with DVI Cable

Adding HDTV Formats

Adding HDTV Formats — For Older HDTV Models

Using the “Show standard HDTV formats” Option

“Show standard HDTV formats” Option — Cleared

“Show standard HDTV formats” Option — Selected

Troubleshooting HDTV Configuration

8. Configuring Key ForceWare Graphics Driver Features

Adjusting Desktop Colors

Accessing the Desktop Colors Page

Color Correction Settings

Digital Vibrance

Brightness, Contrast, and Gamma

Apply Color Changes to...

Color Channels

Color Curve Graph.

Image Sharpening

Color Profile

Add (ICC Profile Mode)

Other Settings

Adjusting Performance and Quality Settings

Changing Global Driver Settings

Modifying an Existing Application Profile

Adding a New Application Profile

Deleting Application Profiles

Driver Settings

Antialiasing Settings

Anisotropic Filtering

Image Settings

Vertical Sync

Driver Settings — Advanced

View Advanced Settings

Color Profile

Force Mipmaps

Conformant Texture Clamp

Extension Limit

Hardware Acceleration

Trilinear Optimization

Anisotropic Optimizations

Negative LOD bias

Using Video Overlay Settings

Accessing the Video Overlay Settings Page

Overlay Zoom Controls

Zoom Control

Out/In

Screen Region to Zoom

Overlay Color Controls

Hue and Saturation

Adjust Colors

Restore Defaults

Using Full Screen Video Settings

About the Full Screen Video Mirror Feature

Accessing the Full Screen Video Page

Full-Screen Video Settings

Full Screen Device

Track Overlay Rotation

Adjust Colors

Full Screen Video Zoom Controls

Zoom Control

Out/In

Screen Region to Zoom

Troubleshooting Full Screen Video Problems

Using the Tools Page

Accessing the Tools Page
Table of Contents

- Adding the NVIDIA Settings Menu to the Windows Taskbar .. 161
- Display Optimization Wizard .. 163
- Adding NVIDIA Menu Options to the Windows Desktop Menu 164
- Forcing Detection of Connected Television ... 164
- Detecting Displays .. 164
- Using NVRotate Settings .. 166
- Accessing the NVRotate Page .. 166
- Before You Use NVRotate Settings .. 167
- Enabling NVRotate Settings ... 167
- Adjusting Temperature Settings ... 169
- Accessing the Temperature Settings Page ... 169
- Before You Use Temperature Settings .. 170
- Temperature Settings .. 170
- Temperature Level (GPU Core Temperature) ... 170
- Core Slowdown Threshold .. 170
- Ambient Temperature ... 170
- Enable Heat Indicator Warning When Threshold Exceeded 170
- Changing Screen Resolutions and Refresh Rates 171
- Screen Resolution and Color Quality .. 171
- Monitor Settings .. 172
- Adding Custom Screen Resolutions & Refresh Rates 172
- Enabling Custom Screen Resolutions ... 173
- Removing Custom Screen Resolutions & Refresh Rates 173
- Accessing Standard HDTV Formats ... 173
- Advanced Timing .. 174
- Display Mode & Timing Parameters ... 175
- Display Timing Standards ... 176
- Horizontal Pixels ... 177
- Vertical Lines .. 178
- Interlaced Mode .. 178
- Pixel Clock .. 179
- Editing the NVIDIA Display Menu ... 179
- Accessing the Menu Editing Page ... 179
- Using Menu Editing .. 179
- Adjusting PowerMizer Settings — Only for Notebook Computers 182
- Accessing the PowerMizer Page .. 182
- PowerMizer Settings .. 182
- Current Battery Charge .. 182
- Current Power Source .. 182
- Current Power Level .. 183

A. Using Two NVIDIA GPU-Based Graphics Cards

- Before You Begin ... 185
- Before Installing the NVIDIA ForceWare Graphics Display Driver 185
- Examples and Setup ... 185
- GeForce FX 5900 Ultra — Installing the NVIDIA ForceWare Graphics Display Driver ... 186
- GeForce FX 5900 Ultra — Attaching the Secondary Display for nView Dualview Mode ... 187
- GeForce4 MX — Installing the NVIDIA ForceWare Graphics Display Driver ... 190
- Attaching Displays for GeForce4 MX — nView Dualview Mode 191
- Enabling nView Span and Clone Modes — Detaching the Secondary Display ... 193
- Viewing Multiple NVIDIA GPU-based Graphics Cards from the NVIDIA Display Menu ... 194
- Viewing Multiple Card Configurations Using the NVIDIA Settings Menu Icon ... 197

B. Using HDTV with NVIDIA GPU-Based Graphics Cards

- Supported HDTV Connectors ... 199
- Component .. 200
- HDTV over DVI ... 200
- D connector ... 201
- Sample “Component-Based” Cables Shipped with NVIDIA HDTV-Encoded Graphics Cards ... 202

C. NVIDIA Setup Wizard Pages

- NVIDIA Display Wizard — Typical Setup ... 204
- NVIDIA Display Setup Wizard — Custom Setup 205
- NVIDIA Display Wizard — Analog Display with HDTV/DVI 207
- NVIDIA Display Wizard — Digital Display and Television 209

D. Glossary
List of Tables

Table 1.1 Release 70 Graphics Driver — Performance Improvement and New Features .. 15
Table 3.1 Hard Disk Space Requirements—English ... 20
Table 3.2 Hard Disk Space Requirements—Non-English Languages .. 20
Table 3.3 Hard Disk Space Requirements—Full International Package ... 20
Table 3.4 Additional Operating System Requirements .. 21
Table 3.5 Supported NVIDIA GPU-Based Products ... 22
Table 3.6 Supported NVIDIA GPU-Based Integrated Systems .. 23
Table 3.1 NVIDIA Drivers for Windows ... 27
Table 6.1 TV Encoders and Supported TV Adjustment Features ... 103
Table 7.1 Optimizing HDTV Viewing ... 106
Table 7.2 Supported TV/ HDTV Formats .. 108
Table 7.3 D Connector Output Modes .. 108
Table 8.1 Image Settings and Optimizations ... 147
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 4.1</td>
<td>nView Desktop Manager — Sample Profiles Page</td>
<td>48</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>nView Desktop Manager — Save Profile Settings</td>
<td>49</td>
</tr>
<tr>
<td>Figure 4.4</td>
<td>NVIDIA Display Options on the Windows Desktop Menu</td>
<td>53</td>
</tr>
<tr>
<td>Figure 4.5</td>
<td>NVIDIA Display Options from a Video File Context Menu</td>
<td>54</td>
</tr>
<tr>
<td>Figure 4.6</td>
<td>NVIDIA Settings Menu Icon in the Windows Taskbar Notification Area</td>
<td>55</td>
</tr>
<tr>
<td>Figure 4.7</td>
<td>NVIDIA Settings Sample Menu</td>
<td>55</td>
</tr>
<tr>
<td>Figure 4.8</td>
<td>NVIDIA Settings Sample Menus with Four Connected Graphics Cards</td>
<td>56</td>
</tr>
<tr>
<td>Figure 4.12</td>
<td>NVIDIA Display — Sample Context Help</td>
<td>61</td>
</tr>
<tr>
<td>Figure 4.13</td>
<td>NVIDIA Display Menu — Sample Tool Tip for Disabled Settings</td>
<td>62</td>
</tr>
<tr>
<td>Figure 5.1</td>
<td>nView Single Display Mode — Windows XP/2000</td>
<td>64</td>
</tr>
<tr>
<td>Figure 5.2</td>
<td>nView Multi-Display Mode — Windows XP/2000</td>
<td>65</td>
</tr>
<tr>
<td>Figure 5.6</td>
<td>nView Display Pair Options</td>
<td>72</td>
</tr>
<tr>
<td>Figure 5.9</td>
<td>nView Display Settings — Installing Dualview in Windows 2000.</td>
<td>76</td>
</tr>
<tr>
<td>Figure 5.10</td>
<td>Display Properties Settings — Dualview Mode (Windows 2000).</td>
<td>77</td>
</tr>
<tr>
<td>Figure 5.12</td>
<td>nView Horizontal Span Mode — Windows XP</td>
<td>81</td>
</tr>
<tr>
<td>Figure 5.13</td>
<td>nView Vertical Span Mode — Windows XP</td>
<td>82</td>
</tr>
<tr>
<td>Figure 5.15</td>
<td>nView Clone Mode — TV + Digital Display</td>
<td>85</td>
</tr>
<tr>
<td>Figure 5.16</td>
<td>nView Clone Mode with Virtual Desktop Enabled — Disabling Panning</td>
<td>86</td>
</tr>
<tr>
<td>Figure 5.20</td>
<td>Display Settings — Diagonal</td>
<td>91</td>
</tr>
<tr>
<td>Figure 6.1</td>
<td>Screen Adjustment Settings — Analog Display.</td>
<td>93</td>
</tr>
<tr>
<td>Figure 6.2</td>
<td>Display Timing Settings — Analog Display.</td>
<td>94</td>
</tr>
<tr>
<td>Figure 6.3</td>
<td>Digital Display Settings</td>
<td>96</td>
</tr>
<tr>
<td>Figure 6.4</td>
<td>TV Settings</td>
<td>98</td>
</tr>
<tr>
<td>Figure 6.6</td>
<td>HDTV Output Setting — Video Border</td>
<td>102</td>
</tr>
<tr>
<td>Figure 6.1</td>
<td>Quick Access to TV and HDTV Formats — nView Clone Mode Example</td>
<td>112</td>
</tr>
<tr>
<td>Figure 7.2</td>
<td>HDTV Overscan Configuration — HDTV Component Connection</td>
<td>113</td>
</tr>
<tr>
<td>Figure 7.3</td>
<td>HDTV Overscan Configuration — "Native" Selected</td>
<td>114</td>
</tr>
<tr>
<td>Figure 7.4</td>
<td>HDTV Overscan Configuration — "Shift threshold" Selected</td>
<td>115</td>
</tr>
<tr>
<td>Figure 7.5</td>
<td>Confirm Display Settings Prompts</td>
<td>115</td>
</tr>
<tr>
<td>Figure 7.6</td>
<td>HDTV Overscan Configuration — "Underscan" Selected</td>
<td>116</td>
</tr>
<tr>
<td>Figure 7.7</td>
<td>Underscan Message Requesting Fine-Tuning of Screen Resolution</td>
<td>117</td>
</tr>
<tr>
<td>Figure 7.8</td>
<td>Adjusting Screen Resolution for Underscan Configuration</td>
<td>117</td>
</tr>
<tr>
<td>Figure 7.9</td>
<td>Confirm Display Settings Prompts</td>
<td>118</td>
</tr>
<tr>
<td>Figure 7.10</td>
<td>Back View of HDTV with DVI Connector</td>
<td>118</td>
</tr>
<tr>
<td>Figure 7.13</td>
<td>Screen Resolution & Refresh Rates Page with HDTV Option</td>
<td>122</td>
</tr>
<tr>
<td>Figure 7.14</td>
<td>HDTV Overscan Configuration Message.</td>
<td>124</td>
</tr>
</tbody>
</table>
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 8.1</td>
<td>Color Correction Settings</td>
<td>130</td>
</tr>
<tr>
<td>Figure 8.2</td>
<td>Performance and Quality Settings Page</td>
<td>135</td>
</tr>
<tr>
<td>Figure 8.3</td>
<td>Changing Global Driver Settings</td>
<td>137</td>
</tr>
<tr>
<td>Figure 8.4</td>
<td>Changing Global Driver Settings</td>
<td>138</td>
</tr>
<tr>
<td>Figure 8.8</td>
<td>Modifying a Profile — Renaming and Saving the Profile</td>
<td>142</td>
</tr>
<tr>
<td>Figure 8.12</td>
<td>Hardware Acceleration Driver Setting</td>
<td>150</td>
</tr>
<tr>
<td>Figure 8.13</td>
<td>Driver Settings Displaying Trilinear & Anisotropic Optimizations</td>
<td>151</td>
</tr>
<tr>
<td>Figure 8.14</td>
<td>Video Overlay Settings — Windows XP/2000</td>
<td>154</td>
</tr>
<tr>
<td>Figure 8.15</td>
<td>Full Screen Video Settings — Disabled</td>
<td>156</td>
</tr>
<tr>
<td>Figure 8.17</td>
<td>Full Screen Video — Zoom Control Video Mirror Settings</td>
<td>159</td>
</tr>
<tr>
<td>Figure 8.19</td>
<td>NVIDIA Settings Menu Icon Displayed in the Windows Taskbar Notification Area</td>
<td>161</td>
</tr>
<tr>
<td>Figure 8.23</td>
<td>NVRotate Settings — Landscape Mode</td>
<td>166</td>
</tr>
<tr>
<td>Figure 8.26</td>
<td>Temperature Settings</td>
<td>169</td>
</tr>
<tr>
<td>Figure 8.27</td>
<td>Screen Resolution & Refresh Rates Page</td>
<td>171</td>
</tr>
<tr>
<td>Figure 8.28</td>
<td>Add Custom Resolution Dialog Box</td>
<td>172</td>
</tr>
<tr>
<td>Figure 8.29</td>
<td>Screen Resolution & Refresh Rates Page — HDTV Connected.</td>
<td>174</td>
</tr>
<tr>
<td>Figure 8.31</td>
<td>Menu Editing Page — Default Settings</td>
<td>180</td>
</tr>
<tr>
<td>Figure A.1</td>
<td>Display Properties Settings — 3 Displays with 1 Attached</td>
<td>187</td>
</tr>
<tr>
<td>Figure A.2</td>
<td>One Display With Identifying Number</td>
<td>188</td>
</tr>
<tr>
<td>Figure A.3</td>
<td>Display Properties Settings — 3 Displays with 2 Attached</td>
<td>189</td>
</tr>
<tr>
<td>Figure A.4</td>
<td>Two Displays With Identifying Numbers</td>
<td>189</td>
</tr>
<tr>
<td>Figure A.5</td>
<td>Display Properties Settings — 4 Attached Displays</td>
<td>191</td>
</tr>
<tr>
<td>Figure A.6</td>
<td>Four Displays With Identifying Numbers</td>
<td>192</td>
</tr>
<tr>
<td>Figure A.7</td>
<td>Display Properties Settings — 4 Displays with 2 Attached</td>
<td>193</td>
</tr>
<tr>
<td>Figure A.8</td>
<td>Two Displays With Identifying Numbers</td>
<td>194</td>
</tr>
<tr>
<td>Figure A.9</td>
<td>NVIDIA Display Menu — GeForce FX 5900 Ultra and GeForce4 MX 420 Options</td>
<td>195</td>
</tr>
<tr>
<td>Figure A.10</td>
<td>NVIDIA Display Menu Showing Both GeForce FX 5900 Ultra and GeForce4 MX Graphics Cards</td>
<td>196</td>
</tr>
<tr>
<td>Figure A.11</td>
<td>NVIDIA Settings Taskbar Menu Displaying NVIDIA GeForce FX 5200 Ultra-based and GeForce4 MX-based Graphics Cards</td>
<td>197</td>
</tr>
<tr>
<td>Figure B.1</td>
<td>Sample Component Cables.</td>
<td>200</td>
</tr>
<tr>
<td>Figure B.2</td>
<td>Sample DVI Cable.</td>
<td>201</td>
</tr>
<tr>
<td>Figure B.3</td>
<td>Sample NVIDIA Personal Cinema™ A/V Cables</td>
<td>201</td>
</tr>
<tr>
<td>Figure B.4</td>
<td>Sample Video Cables</td>
<td>202</td>
</tr>
<tr>
<td>Figure C.1</td>
<td>NVIDIA Display Wizard — Typical Setup</td>
<td>204</td>
</tr>
<tr>
<td>Figure C.2</td>
<td>NVIDIA Display Setup Wizard — Custom Setup Pages (1)</td>
<td>205</td>
</tr>
<tr>
<td>Figure C.3</td>
<td>NVIDIA Display Setup Wizard — Custom Setup Pages (2)</td>
<td>206</td>
</tr>
<tr>
<td>Figure C.4</td>
<td>NVIDIA Display Wizard — Analog Display with HDTV/DVI Pages (1)</td>
<td>207</td>
</tr>
<tr>
<td>Figure C.5</td>
<td>NVIDIA Display Wizard — Analog Display with HDTV/DVI Pages (2)</td>
<td>208</td>
</tr>
</tbody>
</table>
Chapter 1

INTRODUCTION

This chapter discusses the following major topics:

• “About this Guide” on page 11
• “Online Help” on page 12
• “NVIDIA Display Properties and nView Desktop Manager” on page 13
• “Release 70 New Features and Enhancements” on page 13

About this Guide

This user’s guide is addressed to users of the control panel-based NVIDIA® ForceWare™ graphics display driver.

This guide focuses on NVIDIA desktop products, i.e, graphics cards based on the NVIDIA GeForce™ series of GPUs (graphics processing units) listed in Table 3.5, “Supported NVIDIA GPU-Based Products” and Table 3.6, “Supported NVIDIA GPU-Based Integrated Systems”.

For technical details on the features and benefits of the NVIDIA ForceWare graphics driver, refer to the NVIDIA Web page — www.nvidia.com.
Chapter 1
Introduction

Other Related Documentation

• **NVIDIA ForceWare Graphics Driver: Quadro Workstation User’s Guide** — **Release 70 driver version**. Refer to this document if you are primarily using the NVIDIA workstation products, i.e., graphics cards based on the NVIDIA Quadro® series of GPUs listed in Table 3.5, “Supported NVIDIA GPU-Based Products”.

• **NVIDIA ForceWare Graphics Drivers nView Desktop Manager User’s Guide** — **Release 70 driver version**. Refer to this document if you are using the nView™ Desktop Manager application component of the ForceWare graphics driver.

• **NVIDIA ForceWare Graphics Driver: Release Notes** — **Release 70 driver version**. These Release Note documents describe performance improvements and software fixes in the ForceWare graphics drivers. Release notes also enable add-in-card (AIC) producers and original equipment manufacturers (OEMs) to monitor performance improvements and bug fixes in the driver.

• **Application Note — Using NVIDIA SLI Graphics Cards** — **Version 2.0 or later**

 Note: NVIDIA SLI multi-GPU features are intended for advanced users and available with NVIDIA SLI graphics cards.

Online Help

Context Help

You can obtain context Help for any of the settings on the NVIDIA display control panel pages.

Also, when a setting is disabled (grayed out), placing the cursor on the setting provides “too tip” help indicating the reason it is disabled.

For complete details on Help and tool tips, see “Using the NVIDIA Display Menu Help and Tool Tips” on page 60.
NVIDIA Display Properties and nView Desktop Manager

The NVIDIA ForceWare graphics display driver includes two major control panel-based components — NVIDIA display properties and nView Desktop Manager.

In general terms, “nView™” represents a collection of multi-display technologies encompassing driver support, multi-display GPU architecture, and desktop management support.

- **NVIDIA display properties**, the topic of this user’s guide, refers to the control panel-based user interface from which you can configure the advanced display properties of the current release of the NVIDIA ForceWare graphics driver. For details on using the NVIDIA display control panel menu, see “Accessing the NVIDIA Display Control Panel Pages” on page 52.

- **nView Desktop Manager** is a user-level application utility that focuses on making you more productive when working on your Windows® desktop. nView Desktop Manager was originally created for multi-display graphics cards but has grown to enhance single-display user desktops as well. Desktop Manager supports both single-display and multi-display configurations running with single-display, multi-display, or multiple graphics cards based on NVIDIA GPUs. For details on using nView Desktop Manager features, refer to the NVIDIA ForceWare Graphics Drivers: nView Desktop Manager User’s Guide.

Release 70 New Features and Enhancements

Overview

- **Support for Newest GeForce 6 Series GPUs** — All driver modules within Release 70 support the latest GPUs from the NVIDIA GeForce 6 Series. The Release 70 graphics driver also supports the TurboCache™ memory management architecture of the GeForce 6200 GPU. See “Display Driver, DirectX, and OpenGL” on page 15.

- **Improved Video Functionality** — Improved video functionality includes scaling for the newest GeForce 6 Series GPUs, and improved de-interlacing. For details, see “Video” on page 15.
Chapter 1
Introduction

- **New Setup Wizards** — The Release 70 driver provides custom setup wizards for monitor and television displays. “NVIDIA Display Setup Wizards” on page 50.

- **Control Panel Interface Improvements**
 - Improved HDTV-over-DVI User Interface, and support for arbitrary overscan/underscan for HDTV-over-DVI
 - Improved pages—Driver Information Screen, Advanced Timings, Change Resolutions
 - New property pages - SLI (available with NVIDIA SLI graphics cards) and Tools.
 - New features—Play On My Display, Best fit scaling option, and ability to rename the monitors in the display menu on the nView Page.

 For details, see “NVIDIA Display” on page 16.

- **Desktop Manager Wizard Improvements**
 - **Improved Setup Wizard** for display monitor, television, and high definition television (HDTV).
 - **New hot keys**—“Toggle stereo 3D display” and “Transparent desktop lock”

 For details, see “nView Desktop Manager” on page 17.
Details by Driver Module

Display Driver, DirectX, and OpenGL

Table 1.1 Release 70 Graphics Driver — Performance Improvement and New Features

<table>
<thead>
<tr>
<th></th>
<th>Display Driver</th>
<th>DirectX</th>
<th>OpenGL</th>
</tr>
</thead>
</table>
| **Performance Improvements** | • Improved stability and robustness
• Improved NVIDIA SLI multi-GPU functionality
• Support for 512 MB graphics cards
• HDTV-over-DVI functionality | • Improved robustness
• Multi-GPU refinements
• Improvements in
 - Texture management
 - SRGB handling
 - Anisotropic filtering | Improved workstation performance for OpenGL applications. |
| **New Features** | • Support of the unified memory architecture of the latest GeForce 6 series of GPUs.
• Support of the latest GeForce 6 series of GPUs.
• Support of the TurboCache memory management architecture of the latest GeForce 6200 series GPUs. TurboCache dynamically allocates system memory to augment the frame buffer, resulting in increased memory bandwidth. | Support of the unified memory architecture of the latest GeForce 6 series of GPUs. | Support of the latest GeForce 6 series of GPUs. |

Video

New video processing features include:
• Windows Media Video 9 (WMV9) video acceleration — support for hardware accelerating decoding WMV9 video files on GeForce 6 series GPUs. To enable this feature, a software update from Microsoft is required.

Video processing improvements include:
• Video scaling implementations to support the newest GeForce 6 series GPUs.
• Motion adaptive de-interlacing
• Color management improvements include:
 • Color space conversion and processing amplifiers
 • Extended color range
 • Color temperature correction
NVIDIA Display

- **Improved NVIDIA display slideout menu** layout and functionality. The menu automatically resizes to fit content when you first launch the NVIDIA display control panel. You can also resize the slideout menu by dragging the window border. See chapters 4 and 5 — “NVIDIA Driver Installation and Control Panel Access” on page 46 and “Using nView Multi-Display Settings” on page 63.

- **Improved EDID [Extended Display Identification Data] display names** in the control panel, desktop menus, and APIs are more descriptive than the previous “Digital” and “Analog” display designators. See “Desktop Access” on page 52 and “Other NVIDIA Display Menu Items” on page 59.

- **Rename displays** — You can now rename your displays from the nView Display Settings page.

- **Play-On-My-Display** — Right-click on the pop-up menu item to play video files on any connected display. See “Shortcut to Playing Video Files on Any Display” on page 54.

- **Tools page** — provides options for shortcuts, display optimizations, and troubleshooting. For details, see “Using the Tools Page” on page 161. The Tools page replaces the Release 65 Troubleshooting page.

- **Improved Driver Information** and **Change Resolutions** pages. See “The NVIDIA GPU Page” on page 58 and “Changing Screen Resolutions and Refresh Rates” on page 172.

- **Application profiles can include “color settings”** — You can now associate application-specific color settings (Digital Vibrance, Brightness, Contrast, Gamma, etc.) with video games. See “Driver Settings” on page 145 and “Color Profile” on page 134.

- **Improved HDTV-over-DVI** user interface and support for arbitrary overscan/underscan for HDTV-over-DVI. See “Enabling HDTV-Over-DVI — Only for HDTVs Connected with DVI Cable” on page 118, “Using ‘Shift Threshold’” on page 114, and “Using Underscan” on page 116.

- **Show HDTV display formats** option on the Change Resolutions page lets you add and remove standard EIA 861b HD modes and enables HD over DVI. See “Using the “Show standard HDTV formats” Option” on page 123.

- **The Advanced Timings** page now lets you modify the X and Y resolution to create a custom mode. Custom modes creation and advanced timings adjustments are combined on one page. See “Advanced Timing” on page 175.
• **Improved SLI multi-GPU mode pages** — available with NVIDIA SLI graphics cards intended for use by advanced users. For details, see the document “Application Note — Using NVIDIA SLI Graphics Cards” Version 2.0 or later. **nView Desktop Manager**

New Features

- “Toggle Stereo 3D Display” hot key
- “Transparent Desktop Lock” hot key
- New **Display Optimization Wizard** (Display Calibration, Gamma)

Feature Enhancements

- **nView Desktop Manager Wizard**
 - Improved layout and usability of the wizards.
 - Improved television and HDTV support in the setup wizards and TV Wizard.
 - New **Display Optimization Wizard** (Display Calibration, Gamma)
- **Profiles** — .tvp file association: manage/load profiles from Windows Explorer
- **Hot Keys** enhancements include:
 - Consolidation of some actions, providing fewer hot keys and increased functionality
 - New hot keys: Activate Last Active Desktop, and Show Last Blocked Popup
- **nView Toolbar** — Added drag-n-drop window management to the display toolbars.
- **Gridlines** — New gridline creation tools to insert preset rows and columns
- **Internet Explorer Popup Preventer**—Sensitivity Adjustment
- **Window Management** — New setting to open window on next empty display

NVManagement

Improved functionality in response to customer feedback. The NVManagement application includes new switches for scripting driver settings

Driver Independence

For ForceWare graphics drivers Release 50 and later, any nView version can be installed over any driver version.
Chapter 3
SYSTEM REQUIREMENTS

This chapter contains the following major sections:
• “Supported Operating Systems” on page 19
• “Software — NVIDIA Graphics Driver” on page 21
• “Hardware — Supported NVIDIA Products” on page 21
• “Supported Languages” on page 24
• “Notes on Feature and Configuration Support” on page 24

Supported Operating Systems

This Release 70 driver includes drivers designed for the following Microsoft® operating systems:
• Microsoft Windows® XP
 • Windows XP Media Center Edition 2005
 • Windows XP Media Center Edition 2004
 • Windows XP Professional
 • Windows XP Home Edition
 • Windows XP 64-bit Edition for 64-Bit Extended Systems
 • Windows Server 2003 SP1 for 64-Bit Extended Systems
Chapter 3
System Requirements

- Microsoft Windows 2000 and Windows NT® 4.0
- Microsoft Windows 98 and Windows Millennium Edition (Me), collectively called Windows 9x in this document

Minimum Hard Disk Space

The minimum hard disk space requirement for each operating system are listed in Table 3.1, Table 3.2, and Table 3.3:

Table 3.1 Hard Disk Space Requirements—English

<table>
<thead>
<tr>
<th>Operating System</th>
<th>Minimum Hard Disk Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows XP (all editions)</td>
<td>26.02 MB</td>
</tr>
<tr>
<td>Windows 2000</td>
<td>26.02 MB</td>
</tr>
<tr>
<td>Windows NT 4.0</td>
<td>20.25 MB</td>
</tr>
<tr>
<td>Windows Me</td>
<td>23.45 MB</td>
</tr>
<tr>
<td>Windows 98</td>
<td>23.45 MB</td>
</tr>
</tbody>
</table>

Table 3.2 Hard Disk Space Requirements—Non-English Languages

<table>
<thead>
<tr>
<th>Operating System</th>
<th>Minimum Hard Disk Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows XP (all editions)</td>
<td>20.91 MB</td>
</tr>
<tr>
<td>Windows 2000</td>
<td>20.91 MB</td>
</tr>
<tr>
<td>Windows NT 4.0</td>
<td>20.91 MB</td>
</tr>
<tr>
<td>Windows Me</td>
<td>20.91 MB</td>
</tr>
<tr>
<td>Windows 98</td>
<td>20.91 MB</td>
</tr>
</tbody>
</table>

Table 3.3 Hard Disk Space Requirements—Full International Package

<table>
<thead>
<tr>
<th>Operating System</th>
<th>Minimum Hard Disk Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows XP (all editions)</td>
<td>46.93 MB</td>
</tr>
<tr>
<td>Windows 2000</td>
<td>46.93 MB</td>
</tr>
<tr>
<td>Windows NT 4.0</td>
<td>41.16 MB</td>
</tr>
<tr>
<td>Windows Me</td>
<td>44.36 MB</td>
</tr>
<tr>
<td>Windows 98</td>
<td>44.36 MB</td>
</tr>
</tbody>
</table>
Additional Operating System Requirements

The operating systems in Table 3.4 require the additional packages listed in order to be supported by NVIDIA.

Table 3.4 Additional Operating System Requirements

<table>
<thead>
<tr>
<th>Operating System</th>
<th>Additional Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows NT 4.0</td>
<td>Service Pack 4</td>
</tr>
<tr>
<td>Windows 98</td>
<td>Microsoft DirectX™ 5</td>
</tr>
</tbody>
</table>

Software — NVIDIA Graphics Driver

Make sure the current Release 70 version of the NVIDIA ForceWare graphics display driver for your Windows operating system has been installed on your computer.

Note: If you are using a mobile (laptop or notebook) computer, please be sure that you are using the “mobile” version of the NVIDIA display driver.

Note: Consult your System Administrator if you are unsure about the version that is installed.

Hardware — Supported NVIDIA Products

Table 3.5, “Supported NVIDIA GPU-Based Products” lists the NVIDIA GPU-based graphics cards and Table 3.6, “Supported NVIDIA GPU-Based Integrated Systems” lists the NVIDIA GPU-based integrated systems that are supported by the NVIDIA ForceWare Release 70 graphics driver.

Note: The products are listed in the approximate order of their performance.

Note: Some Release 70 driver features support only certain NVIDIA graphics cards and display configuration, as specified in “Release 70 Enhancements” on page 13 and “Notes on Feature and Configuration Support” on page 24.

Note: NVIDIA PCI Express graphic cards are not supported under Windows 98/Me.
Chapter 3
System Requirements

Table 3.5 Supported NVIDIA GPU-Based Graphics Cards

<table>
<thead>
<tr>
<th>NVIDIA Desktop Product</th>
<th>NVIDIA Workstation Product</th>
<th>Number of Displays Supported per Graphics Card</th>
</tr>
</thead>
<tbody>
<tr>
<td>GeForce 6200</td>
<td>Quadro FX 4400</td>
<td></td>
</tr>
<tr>
<td>GeForce 6200 with TurboCache</td>
<td>Quadro FX 540</td>
<td></td>
</tr>
<tr>
<td>GeForce 6600</td>
<td>Quadro FX 1400</td>
<td></td>
</tr>
<tr>
<td>GeForce 6600 GT</td>
<td>Quadro FX 4000</td>
<td></td>
</tr>
<tr>
<td>GeForce 6610 XL</td>
<td>Quadro FX 3400</td>
<td></td>
</tr>
<tr>
<td>GeForce 6800 Ultra</td>
<td>Quadro FX 1300</td>
<td></td>
</tr>
<tr>
<td>GeForce 6800</td>
<td>Quadro FX 1100</td>
<td></td>
</tr>
<tr>
<td>GeForce 6800 GT</td>
<td>Quadro FX 330</td>
<td></td>
</tr>
<tr>
<td>GeForce 6800 LE</td>
<td>Quadro FX 3000(G)</td>
<td></td>
</tr>
<tr>
<td>GeForce FX 5950 Ultra</td>
<td>Quadro FX 600</td>
<td></td>
</tr>
<tr>
<td>GeForce FX 5700 Ultra</td>
<td>Quadro FX 500</td>
<td></td>
</tr>
<tr>
<td>GeForce FX 5700</td>
<td>Quadro NVS 280 PCI</td>
<td></td>
</tr>
<tr>
<td>GeForce FX 5700LE</td>
<td>Quadro FX 2000</td>
<td></td>
</tr>
<tr>
<td>GeForce FX 5700VE</td>
<td>Quadro FX 1000</td>
<td></td>
</tr>
<tr>
<td>GeForce PCX 5750</td>
<td>Quadro FX 700</td>
<td></td>
</tr>
<tr>
<td>GeForce FX 5900</td>
<td>Quadro FX 600</td>
<td></td>
</tr>
<tr>
<td>GeForce PCX 5300</td>
<td>Quadro FX 500</td>
<td></td>
</tr>
<tr>
<td>GeForce FX 5200 Ultra</td>
<td>Quadro NVS 280 PCI</td>
<td></td>
</tr>
<tr>
<td>GeForce PCX 5900</td>
<td>Quadro FX 2000</td>
<td></td>
</tr>
<tr>
<td>GeForce FX 5200 LE</td>
<td>Quadro FX 1000</td>
<td></td>
</tr>
<tr>
<td>GeForce PCX 5900</td>
<td>Quadro FX 700</td>
<td></td>
</tr>
<tr>
<td>GeForce FX 5200</td>
<td>Quadro FX 600</td>
<td></td>
</tr>
<tr>
<td>GeForce FX 5500</td>
<td>Quadro FX 500</td>
<td></td>
</tr>
<tr>
<td>GeForce PCX 5300</td>
<td>Quadro NVS 280 PCI</td>
<td></td>
</tr>
<tr>
<td>GeForce FX 5600 Ultra</td>
<td>Quadro FX 2000</td>
<td></td>
</tr>
<tr>
<td>GeForce FX 5600</td>
<td>Quadro FX 1000</td>
<td></td>
</tr>
<tr>
<td>GeForce PCX 5600SE</td>
<td>Quadro FX 700</td>
<td></td>
</tr>
<tr>
<td>GeForce FX 5800 Ultra</td>
<td>Quadro FX 500</td>
<td></td>
</tr>
<tr>
<td>GeForce FX 5800</td>
<td>Quadro FX 600</td>
<td></td>
</tr>
<tr>
<td>GeForce4 Ti 4800</td>
<td>Quadro4 980 XGL</td>
<td></td>
</tr>
<tr>
<td>GeForce4 Ti 4800 SE</td>
<td>Quadro4 900 XGL</td>
<td></td>
</tr>
<tr>
<td>GeForce4 Ti 4200 w/AGP 8x</td>
<td>Quadro4 750 XGL</td>
<td></td>
</tr>
<tr>
<td>GeForce4 Ti 4600</td>
<td>Quadro4 700 XGL</td>
<td></td>
</tr>
<tr>
<td>GeForce4 Ti 4400</td>
<td>Quadro4 500 XGL</td>
<td></td>
</tr>
<tr>
<td>GeForce4 Ti 4200</td>
<td>Quadro4 750 XGL</td>
<td></td>
</tr>
</tbody>
</table>

2 — applies to all GPUs in this category.
Chapter 3

System Requirements

Table 3.5 Supported NVIDIA GPU-Based Graphics Cards (continued)

<table>
<thead>
<tr>
<th>NVIDIA Desktop Product</th>
<th>NVIDIA Workstation Product</th>
<th>Number of Displays Supported per Graphics Card</th>
</tr>
</thead>
<tbody>
<tr>
<td>GeForce3</td>
<td>Quadro DCC</td>
<td>1 — applies to all GPUs in this category.</td>
</tr>
<tr>
<td>GeForce3 Ti 500</td>
<td>Quadro4 580 XGL</td>
<td>2 — applies to all GPUs in this category except Quadro NVS 400</td>
</tr>
<tr>
<td>GeForce3 Ti 200</td>
<td>Quadro4 380 XGL</td>
<td></td>
</tr>
<tr>
<td>GeForce4 MX 440 w/AGP 8x</td>
<td>Quadro4 450 XGL</td>
<td></td>
</tr>
<tr>
<td>GeForce4 MX 440 SE w/AGP 8x</td>
<td>Quadro NVS 280</td>
<td></td>
</tr>
<tr>
<td>GeForce4 MX 460</td>
<td>Quadro4 450 XGL</td>
<td></td>
</tr>
<tr>
<td>GeForce4 MX 440</td>
<td>Quadro4 450 XGL</td>
<td></td>
</tr>
<tr>
<td>GeForce4 MX 420</td>
<td>Quadro4 550 XGL</td>
<td></td>
</tr>
<tr>
<td>GeForce PCX 4300</td>
<td>Quadro NVS 200</td>
<td></td>
</tr>
<tr>
<td>GeForce4 MX Integrated Graphics</td>
<td>Quadro NVS 400</td>
<td></td>
</tr>
<tr>
<td>GeForce2 Ti</td>
<td>Quadro2 Pro</td>
<td>2 — applies to all GPUs in this category.</td>
</tr>
<tr>
<td>GeForce2 Ultra</td>
<td>Quadro2 MXR</td>
<td>1 — applies to all GPUs in this category.</td>
</tr>
<tr>
<td>GeForce2 Pro</td>
<td>Quadro2 EX</td>
<td></td>
</tr>
<tr>
<td>GeForce2 GTS</td>
<td>Quadro2 MXR</td>
<td></td>
</tr>
<tr>
<td>GeForce2 MX</td>
<td>Quadro2 MXR</td>
<td></td>
</tr>
<tr>
<td>GeForce2 MX400</td>
<td>Quadro2 MXR</td>
<td></td>
</tr>
<tr>
<td>GeForce2 MX200</td>
<td>Quadro2 MXR</td>
<td></td>
</tr>
<tr>
<td>GeForce2 MX100</td>
<td>Quadro2 MXR</td>
<td></td>
</tr>
<tr>
<td>GeForce2 MX Integrated Graphics</td>
<td>Quadro</td>
<td>1 — applies to all GPUs in this category.</td>
</tr>
<tr>
<td>GeForce 256</td>
<td>Quadro2 MXR</td>
<td></td>
</tr>
<tr>
<td>GeForce 256 DDR</td>
<td>Quadro2 MXR</td>
<td></td>
</tr>
</tbody>
</table>

Table 3.6 Supported NVIDIA GPU-Based Integrated Systems

<table>
<thead>
<tr>
<th>NVIDIA Integrated Products</th>
<th>Graphics Core</th>
<th>Number of Displays Supported per GPU-Based Graphics Card</th>
</tr>
</thead>
<tbody>
<tr>
<td>nForce 420/420D</td>
<td>GeForce2 MX</td>
<td>2 — applies to all GPUs in this category.</td>
</tr>
<tr>
<td>nForce 220/220D</td>
<td>GeForce2 MX</td>
<td>2 — applies to all GPUs in this category.</td>
</tr>
<tr>
<td>nForceTM</td>
<td>GeForce2 MX</td>
<td>2 — applies to all GPUs in this category.</td>
</tr>
<tr>
<td>nForce128 S</td>
<td>GeForce2 MX</td>
<td>2 — applies to all GPUs in this category.</td>
</tr>
<tr>
<td>nForce2 ST</td>
<td>GeForce2 MX</td>
<td>2 — applies to all GPUs in this category.</td>
</tr>
<tr>
<td>nForce2 G</td>
<td>GeForce2 MX</td>
<td>2 — applies to all GPUs in this category.</td>
</tr>
<tr>
<td>nForce2</td>
<td>GeForce2 MX</td>
<td>2 — applies to all GPUs in this category.</td>
</tr>
</tbody>
</table>
Chapter 3
System Requirements

Supported Languages

The following languages are supported in the NVIDIA display control panel pages:

<table>
<thead>
<tr>
<th>English (USA)</th>
<th>German</th>
<th>Portuguese (Euro/Iberian)</th>
</tr>
</thead>
<tbody>
<tr>
<td>English (UK)</td>
<td>Greek</td>
<td>Russian</td>
</tr>
<tr>
<td>Arabic</td>
<td>Hebrew</td>
<td>Slovak</td>
</tr>
<tr>
<td>Chinese (Simplified)</td>
<td>Hungarian</td>
<td>Slovenian</td>
</tr>
<tr>
<td>Chinese (Traditional)</td>
<td>Italian</td>
<td>Spanish</td>
</tr>
<tr>
<td>Czech</td>
<td>Japanese</td>
<td>Spanish (Latin America)</td>
</tr>
<tr>
<td>Danish</td>
<td>Korean</td>
<td>Swedish</td>
</tr>
<tr>
<td>Dutch</td>
<td>Norwegian</td>
<td>Thai</td>
</tr>
<tr>
<td>Finnish</td>
<td>Polish</td>
<td>Turkish</td>
</tr>
<tr>
<td>French</td>
<td>Portuguese (Brazil)</td>
<td></td>
</tr>
</tbody>
</table>

Notes on Feature and Configuration Support

Feature Support

- To access features on the nView Display Settings page (see “nView Display Modes” on page 63), you need:
 - a multi-display graphics card based on any of the NVIDIA GPUs that support multiple displays on a single card, as indicated in Table 3.5, “Supported NVIDIA GPU-Based Products”, and
 - at least two displays connected to the graphics card.
- When running with multiple graphics cards (i.e., two or more NVIDIA GPU-based graphics card are installed in your computer), ensure that the same version of the NVIDIA ForceWare graphics display driver is installed for each card. For a detailed discussion of using multi-display nView modes, see “Using nView Multi-Display Settings” on page 63.
- Some NVIDIA display and nView Desktop Manager features are supported by either single-display or multi-display NVIDIA GPU-based graphics cards. Therefore, to access features that are supported by single-display configurations, you only need a single display connected, provided that the particular NVIDIA GeForce-based graphics card supports these features.
The settings available on the NVIDIA display control panel pages may vary depending on the specific NVIDIA GeForce GPU-based graphics card you are using. For example, settings that are available for a specific graphics card such as one that is GeForce FX 5900 Ultra-based, may not be available on a graphics card based on a GeForce4 Ti- or other older NVIDIA GeForce GPU series.

Examples in this Guide

For example purposes, most of the NVIDIA display control panel pages shown in this guide feature an NVIDIA GeForce GPU-based graphics card. You may be using a different NVIDIA GPU-based graphics card, in which case you will see the exact name of the GPU you are using reflected in the NVIDIA GPU tab.

The Windows XP screens shown in this document apply also to Windows 2000 functionality, unless noted otherwise.
This chapter provides information on the previous releases of the NVIDIA ForceWare graphics display driver and summarizes the features and enhancements that have been introduced in each release.

The following major topics are discussed:

- “Driver Release History” on page 26
- “Release 70 Enhancements” on page 27
- “Release 65 Enhancements” on page 27
- “Release 60 Enhancements” on page 30

Driver Release History

Release 70 is the latest release of the NVIDIA ForceWare graphics display driver for Windows. Table 3.1 includes a summary of previous driver releases and the versions associated with them.
Chapter 3
NVIDIA ForceWare Graphics Display Driver — Feature History

Note: Some versions listed may not have been released outside of NVIDIA.

Table 3.1 NVIDIA Drivers for Windows

<table>
<thead>
<tr>
<th>Driver Release</th>
<th>Name</th>
<th>Version</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 70</td>
<td>ForceWare</td>
<td>71.xx</td>
<td></td>
</tr>
<tr>
<td>Release 65</td>
<td>ForceWare</td>
<td>66.77, 66.93, 67.02, 67.03</td>
<td></td>
</tr>
<tr>
<td>Release 60</td>
<td>ForceWare</td>
<td>61.76, 61.77</td>
<td></td>
</tr>
<tr>
<td>Release 55</td>
<td>ForceWare</td>
<td>56.64, 56.72, 57.30</td>
<td></td>
</tr>
<tr>
<td>Release 50</td>
<td>ForceWare</td>
<td>52.16, 53.04</td>
<td></td>
</tr>
<tr>
<td>Release 40</td>
<td>Detonator FX</td>
<td>44.03–45.xx</td>
<td></td>
</tr>
<tr>
<td>Release 40</td>
<td>Detonator 40</td>
<td>40.60–44.02</td>
<td></td>
</tr>
<tr>
<td>Release 35</td>
<td>Detonator 35</td>
<td>35.60–37.80</td>
<td></td>
</tr>
<tr>
<td>Release 25</td>
<td>Detonator 25</td>
<td>26.00–32.90</td>
<td></td>
</tr>
<tr>
<td>Release 20</td>
<td>Detonator XP</td>
<td>21.83–23.xx</td>
<td></td>
</tr>
<tr>
<td>Release 10</td>
<td>Detonator 3 v1x.xx</td>
<td>10.00–17.xx</td>
<td></td>
</tr>
</tbody>
</table>

Release 70 Enhancements

See “Release 70 Enhancements” on page 13.

Release 65 Enhancements

SLI Support

Release 65 supports the new Scalable Link Interface (SLI) technology for improved
performance using dual high-end graphics cards1 that support SLI technology.

The following combinations of PCI Express graphics cards & chipsets are supported
in this release of the driver:

<table>
<thead>
<tr>
<th>Chipset</th>
<th>PCI-Express Graphics Cards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intel(R) E7525</td>
<td>GeForce 6800 Ultra + GeForce 6800 Ultra</td>
</tr>
<tr>
<td></td>
<td>GeForce 6800 GT + GeForce 6800 GT</td>
</tr>
</tbody>
</table>

1. Cards must be of the same vendor and model number.
Chapter 3
NVIDIA ForceWare Graphics Display Driver — Feature History

512 MB Frame Buffer Support

ForceWare Release 65 graphics drivers provide memory management techniques for supporting 512 MB versions of the new generation of NVIDIA graphics cards, such as the GeForce 6800 or Quadro FX 4000 and later.

Multi-GPU Support

Release 65 supports the new NVIDIA **Scalable Link Interface (SLI)** technology for improved performance using dual high-end graphics cards\(^2\) that support SLI technology, such as the PCI Express based GeForce 6800 Ultra, GeForce 6800 GT, or NVIDIA Quadro FX 3400 GPU-based graphics cards.

Operating System Support

Release 65 supports Windows XP SP2 and will support the next version of Windows XP Media Center Edition — “Symphony”.

<table>
<thead>
<tr>
<th>Chipset</th>
<th>PCI-Express Graphics Cards</th>
</tr>
</thead>
</table>
| NVIDIA nForce SLI | GeForce 6800 Ultra + GeForce 6800 Ultra
GeForce 6800 GT + GeForce 6800 GT
GeForce 6800 + GeForce 6800
GeForce 6600 GT + GeForce 6600 GT |
| NVIDIA nForce Professional 2200 | GeForce 6800 Ultra + GeForce 6800 Ultra
GeForce 6800 GT + GeForce 6800 GT
GeForce 6800 + GeForce 6800
GeForce 6600 GT + GeForce 6600 GT |
| NVIDIA nForce Professional 2200 + NVIDIA nForce Professional 2050 | GeForce 6800 Ultra + GeForce 6800 Ultra
GeForce 6800 GT + GeForce 6800 GT
GeForce 6800 + GeForce 6800
GeForce 6600 GT + GeForce 6600 GT |

2. Cards must be of the same vendor and model number.
Enhancements in Driver Performance

Improved Robustness

The ForceWare Release 65 graphics driver offers improved stability and robustness in DirectX and 2D graphics.

Video Enhancements

Video enhancements in Release 65 include:

- **Inverse telecine** (3:2 pulldown detection and correction) extracts the original 24 fps of film-sourced video for encoding, and prevents encoding of unnecessary frames, eliminating artifacts. To enable this feature, you must download the NVIDIA DVD Decoder for use with Windows Media Player or Windows Media Center Edition.

- **Optimized motion compensation and video processing** to take advantage of the capabilities of the newest generation of NVIDIA GPUs.

- Support for Microsoft’s Certified Output Protection Protocol (COPP)

- Improved media capture interface

3D Graphics API Enhancements

- **DirectX Enhancements**
 - DirectX 9.0c Compatibility
 - Supports the capabilities of the newest generation of NVIDIA GPUs for improved DirectX shader handling and reduced CPU overhead

- **OpenGL Enhancements**
 - Improved and more efficient **vertex_buffer_object (VBO)** handling
 - More efficient memory management for improved performance under Dualview

HDTV Support Enhancements

Release 65 offers improved HDTV over DVI underscan support, exposed through the NVIDIA control panel.
Chapter 3
NVIDIA ForceWare Graphics Display Driver — Feature History

Desktop Manager and Control Panel Improvements

Release 65 includes the following improvements in the Desktop Manager and NVIDIA display control panel:

- High Resolution Scalable Desktop Performance
- Desktop Manager Wizards
- Desktop Manager Hot Keys, Toolbars, and Gridlines
- Application Profiles
- Control Panel User Interface

Release 60 Enhancements

Latest GPU Support

The ForceWare Release 60 graphics drivers support the newest generation of NVIDIA GPUs, including

- Improved vertex and pixel compilers
- Video shaders

PCI Express Support

ForceWare Release 60 offers 2D and 3D graphics driver support for the PCI Express I/O, including

- DirectX support
- Enhanced OpenGL support
 Improved texture memory management and bandwidth utilization

Enhancements in Driver Performance

- Enhanced Robustness
 The ForceWare Release 60 graphics driver offers more robust stability and compatibility in DirectX support, antialiasing, and desktop rotation.
• Reduction of OCA issues
• Dynamic video memory streamlines operating system resources for large frame buffer configurations

3D Graphics API Enhancements

Direct3D

DirectX 9.0c Support

OpenGL

• New drivers for the OpenGL ARB shading language (GLSL)
• Enhanced support for Windows XP 64-Bit Edition and IA32-E.
• New extensions
 • GL_NV_fragment_program2
 • GL_EXT_blend_equation_separate
 • NV_vertex_program3
 • ATI_draw_buffers
 • ATI_texture_float
 • ATI_texture_mirror_once
 • GL_ARB_texture_non_power_of_two
 • GL_NVX_centroid_sample
 • GL_NVX_conditional_render

Release 55 Enhancements

The Release 55 driver offers new features not found in previous releases of the NVIDIA Driver for Windows. The following highlights the new features in Release 55:

NVIDIA Corporation
Chapter 3
NVIDIA ForceWare Graphics Display Driver — Feature History

PCI Express Support

2D and 3D graphics drivers support the PCI Express I/O.

PAE Support

2D and 3D graphics driver support systems that utilize physical address extensions (PAE)\(^3\).

nView Desktop Manager Enhancements

- Seamless nView support between 32-bit and 64-bit processes on Windows 64-bit Edition
- Dual NVKeystone support for independent keystone trapezoids under nView Span modes.
- Per-display Desktop Management

User Interface Enhancements

- New application profiles capability lets you associate a collection of driver settings—such as antialiasing and display quality settings—with an application.
- Easy access standalone panel, independent of the Microsoft Display Properties window.
- Improved multi-adapter support.
- Improved television and HDTV controls

Video Support Enhancements

- Advanced de-interlacing and inverse 3:2 pull-down capability
- Enhanced HDTV and Media Center support

3. PAE is an extension that enables Intel compatible computers to address more than 4 GB of physical memory.
3D Graphics API Enhancements

Direct3D

- Improved antialiasing performance
- Improved shaders

OpenGL

New extension: GL_NV_pixel_buffer_object

Release 50 Enhancements

The Release 50 driver offers new features not found in previous releases of the NVIDIA Driver for Windows.

New Feature Highlights

64-bit Support

Driver Release 50 offers AMD64 and IA64 operating system support.

Dynamic Memory Mapping

Dynamic memory mapping adds support for 256 MB graphics cards for video, display, and OpenGL drivers.

NVIDIA Unified Compiler

As today’s GPUs become more and more programmable they are entering a similar era to that of the CPU. For CPUs, it is common for developers to implement code paths specifically optimized for AMD or Intel (e.g. MMX and 3DNow!). Programmable GPUs are no different. Because architectures vary, it makes sense that one common assembly language can’t cover all the nuances of specific GPU micro-architectures. In fact, different code paths make different GPUs go faster. As a result
with the GeForce FX architecture, NVIDIA has implemented a GPU-specific compiler that can be used to optimize application performance.

Display Driver Changes—New Features

- **Rotation Support** for Windows Me/9x
- **Custom Resolutions** - Provides the user with the ability to construct new modes via the NVIDIA control panel.
- **Dynamic EDIDs** - Updates the master mode list with new modes contained in the connected device’s EDID.
- **Support for Special Panels and Devices**
 - Large Panels
 - Wide Panels
 - Seamless Spanning Modes - Included in the mode list to support T221 style large panels.
 - Interlaced Modes for HDTV
 - DVI Device Hot Plugging
- **Frame Lock Functionality** - For synchronizing applications across multiple displays (Quadro FX 3000 only)
- **Edge Blend Functionality** - For blending the adjacent edges of overlapped displays on projection systems (Quadro FX 3000 only)

Video — New Features

- VMR support for Full-screen Video
- Support for Windows Media Center’s Playback and Recording Features

PowerMizer — New Features

- Dynamic Peak Power Control
- Thermal Protection v2.0

User Interface Changes

- Dual View Support
• Change Resolution Panel
• Edge Blending and Desktop Overlap Panel
• Frame Lock Panel
• HDTV Support
• New Color Panel with Enhanced Gamma
• Overclocking Panel
• AGP Settings Panel
• Video BIOS Flash Utilities
• ATL Client Panel
• Menus for NVIDIA user components
• Device Selection drop down in the slider tray
• Panel access for non-administrator users
• Tool tips for the slider tray
• Performance and Quality Settings
• TV-Out Settings
• Device Selection
• Overlay Settings
• Full-screen Video controls

nView

• Action Toolbar
• Kinematic mouse actions
• Resolution per desktop support
• Application monitor exclusions and inclusions
• Internet Explorer pop-up prevention
• Monitor grids
• Keystone luma compensation
• Multiview support
• nViewCmd
• NVManagement
Chapter 3
NVIDIA ForceWare Graphics Display Driver — Feature History

- Faster desktop switching
- Integrated control panels
- New Setup Wizard
- Driver independence

DirectX Graphics

- Floating point render targets
- Multi-element textures
- Improved antialiasing compatibility
- Improved shader handling and stability
- Improved render-to-texture performance

OpenGL

- Windows 9x Rotation Support
- New Extensions Supported
 - GL_ARB_occlusion_query
- Faster Vertex Processing Pipeline—Improved geometry processing and display list support
- Faster vertex and fragment program compilers.
- Improved support for ARB_vertex_buffer_object extension (vbo).
- Improved stability during mode switches, antialiasing, and UBB
- Faster texture downloads

Release 40 Enhancements

The Release 40 driver offers new features not found in previous releases of the NVIDIA Driver for Windows.
Enhanced Display Driver, DirectX, and Video Capabilities

• **Windows XP SP1**
 - Release 40 supports Windows XP SP1, including support for Windows XP Tablet PC and eHome technology.
 - Release 40 provides support for bugcheck EA callbacks, enabling OCA EA failures to be resolved more quickly while assisting to identify failure causes—such as due to chip instability or overclocking.

• **Rotation Support**
 Release 40 supports desktop rotation⁴, which allows the user to rotate the desktop by 90, 180, or 270 degrees.

• **DirectX 9 Support**
 With Microsoft’s release of DirectX 9 runtime, Release 40 version 42.51 and later provides support for DirectX 9, which includes the new vertex shaders, antialiasing modes, and multi-display device support.

• **Video Enhancements**
 - Flip Sync functionality support
 - Support for multiple Macrovision clients
 - Simplified Video Mirror controls

• **TV Overscan Support**
 Depending on the TV encoder used, Release 40 supports TV overscan—allowing the user to eliminate the black borders around the TV display screen. This option is accessible through the NVIDIA display properties control panel.

New Graphical User Interface

• **Media Center Tray Application** — The Media Center Tray is a new application that replaces QuickTweak, and contains menu items that provide access to all NVIDIA user interface software applications.

• **New Display Properties Panel** — The NVIDIA control panel has been redesigned to make navigating easier and to improve control over the display adapter settings.

Enhanced nView Desktop Manager Features

• **Additional Operating System Support** — NVIDIA nView supports Windows NT 4.0, Windows 9X/Me, and Windows 2000/XP.

⁴. Rotation is not supported on graphics cards based on the TNT, TNT2 or Vanta product families.
• **Zoom Support** — New fixed-frame zoom and bi-directional zoom editing capability

• **NV-Switcher** — Improved Alt+Tab switcher which also supports Desktop switching and is expandable to other NVIDIA features

• **Color Keyed Windows** — Allows the user to color key windows for easy identification when activating them on the desktop.

• **Taskbar and Menu Transparency**

• **New window actions and application settings.**

• **Keystone Support**

OpenGL Enhancements

• **OpenGL 1.4 ICD with NVIDIA Extensions** — New extension includes ARB_vertex_program, which co-exists with NV_vertex_program.

• **Enhancements for Workstation Applications**
 - NV1x line stipple enhancements, and NV2x 2-sided lighting optimizations
 - Immediate mode optimizations for Solid Edge, and display list tuning for UGv17.

• **Multi-monitor Improvements** — New accelerated spanning mode is enabled by default.

• **Reduced Power Consumption** — Release 40 utilizes CPU cycles more efficiently, resulting in reduced power consumption without sacrificing performance.

• **Dynamic AGP/Video memory management**

Release 35 Enhancements

The Release 35 driver offers new features not found in previous releases of the NVIDIA Driver for Windows.

• **NVRotate** — The NVRotate feature lets you view your Windows desktop in Landscape or Portrait mode. You can rotate desktop by 90, 180 and 270 degrees.

• Improved and expanded NVIDIA **nView Desktop Manager** application
 nView Desktop Manager has now been redesigned with a convenient user interface and many new features and utilities designed to solve specific problems for users. Utilities such as anti-keystoning support and flat panel monitor

5. Keystone is not supported on graphics cards based on the TNT, TNT2 or Vanta product families.
calibration screens and utilities have been designed to improve windows multi-display usability.

For example, **NVKeystone** can be set to compensate for keystoning effects on your windows display, allowing you to fix distorted projection images. This feature is primarily for laptop (mobile) computers.

Note: For further details on NVKeystone and many new nView Desktop Manager features, see the *NVIDIA nView Desktop Manager User™s Guide.*

Release 25 Enhancements

The Release 25 driver offers new features not found in previous releases of the NVIDIA Driver for Windows.

- **nView:** The latest multi-monitor technology encompassing driver support, multi-monitor GPU architecture, and desktop management support.

 nView consists of two main modules:
 - **nView Display Manager**—New support for multi-monitor functionality, including Clone modes, and Horizontal and Vertical spanning modes.
 - **nView Desktop Manager**—A control panel and desktop management engine for application window management and extension of functions, and support for multiple desktops.

- **Dualview support** for Windows 2000

- **Improved DirectX Video Acceleration (DXVA)**

- **Special support for NVIDIA NV25 capabilities:**
 - IDCT support for DirectX VA
 - Improved antialiasing compatibility and performance
 - Support for NV25 hardware overlays under OpenGL

- **Enhanced 3D Stereo functionality**
 - Support for lenticular lenses on LCDs
 - Stereo DIN connector support
 - VSYNC Off with 3D Stereo
 - Stereo API for developers

- **OpenGL enhancement**
 - **New** `render_to_texture` extension
Chapter 3
NVIDIA ForceWare Graphics Display Driver — Feature History

Release 20 Enhancements

The Release 20 driver offers new features not found in previous releases of the NVIDIA Driver for Windows.

- OpenGL 1.3 ICD with NVIDIA extensions
- OpenGL performance optimizations
- Optimized DirectX pipeline with NVIDIA pixel and vertex shaders.
- Full support for Windows XP, including
 - Full hardware acceleration for Windows XP GUI features
 - Accelerated Windows XP 3D performance through the NVIDIA XPress Link technology

Release 10 Enhancements

The Release 10 driver offers new features not found in previous releases of the NVIDIA Driver for Windows.

- Support for Microsoft DirectX® 8
- Support for Microsoft DirectX® VA 1.0.
- NVIDIA 3D Stereo (requires installation of the optional Stereoscopic driver). The driver provides stereoscopic viewing capabilities for games and still images.
- Special support for NVIDIA GeForce3 capabilities:
 - Pixel and Vertex Shader support for DirectX 8 and OpenGL®.
 - Quincunx antialiasing option for enhanced image quality and performance.
- AMD® Athlon™ Processor and Intel® Pentium® 4 Processor optimizations
- Improved TwinView interface
Release 6 Enhancements

TwinView

TwinView is a Release 6 feature that supports connecting dual displays using a single graphics board (such as the GeForce2 MX or Quadro2 MXR) based on the NV11 chipset. TwinView includes major features such as the Virtual Desktop, Video Mirror, and Desktop Manager features.

TwinView supports a variety of display options, such as digital flat panels, red-green-blue (RGB) monitors, TVs, and analog flat panels. TwinView features the following display modes: Standard, Extended Desktop (Span), and Clone.

Virtual Desktop

Virtual Desktop is a TwinView feature that is useful for panels and monitors with limited resolution. Virtual Desktop is used to set a larger than viewable area on the second display, which supports full pan-and-scan of the entire desktop area. Currently, Virtual Desktop functionality is available under

• Windows NT 4.0 and Windows 2000 in TwinView Standard or Clone mode
• Windows 9x in TwinView Clone mode

Video Mirror

Video Mirror is a TwinView feature that allows a video or DVD application to mirror its playback in full-screen mode on any one of the connected display devices. In other words, Video Mirror allows video data that’s displayed on a hardware overlay to be displayed at full-screen on a secondary display. Currently, Video Mirror functionality is available under

• Windows 2000 in TwinView Clone mode
• Windows 9x in TwinView Clone or Span mode
• Windows 95 in TwinView Clone mode
Desktop Manager

Desktop Manager allows the user to run an application on one or both monitors. This configuration may be useful for entertainment applications, such as DVD playback and digital video editing.

Desktop Manager functions under the TwinView Extended Desktop (Span) mode and, in addition to being supported by the NV11 chipset (i.e., the GeForce2 MX or the Quadro2 MXR graphics board), is also supported by any two NVIDIA graphics boards running in multi-monitor mode.

Digital Vibrance Control

Digital Vibrance Control (DVC), a mechanism for controlling color separation and intensity, boosts the color saturation of an image. DVC is supported by the NV11 chipset (i.e., the GeForce2 MX or Quadro2 MXR graphics board).

OpenGL

The NVIDIA OpenGL Settings control panel contains the following changes:

- Improved full-scene anti-aliasing methods
- Additional options for Windows 2000 and Windows NT 4.0
 - Force 16-bit Depth Buffer
 - Enable Advanced Multiple Monitors

Direct3D

The NVIDIA Direct3D Settings control panel contains the following changes:

- Improved full-scene anti-aliasing methods not previously available
- Removed certain obsolete options

Cursor Trails Support

Release 6 for Windows provides support for cursor trails in Windows 9x.
Control Panels

TwinView, Digital Vibrance Control, OpenGL, and Direct3D features have associated NVIDIA-specific windows (control panels) from which these features can be configured. These control panels are normally accessed by following one of these procedures from the Windows active desktop:

• Click Start > Settings > Control Panel > Display > Settings > Advanced

or

• Click the right mouse button and select Properties > Settings > Advanced.

Release 5 Enhancements

The Release 5 driver adds capabilities in the following areas:

OpenGL

Changes have been made to the core, extensions, performance, and available features of OpenGL.

OpenGL 1.2 Core

Release 5 adds all the features that constitute the OpenGL 1.2 core capabilities:

• BGRA pixel formats
• packed pixel formats (plus R5_G6_B5 formats and reversed formats)
• rescaling vertex normals
• specular highlights after texturing
• level-of-detail control for mipmapped textures (supported in software on TNT2)
• texture coordinate edge clamping
• 3-D textures (performed in software on all platforms)
• vertex array subranges for optimizing vertex array processing

(glDrawRangeElements() retains the performance of glDrawElements())
OpenGL Extensions

The OpenGL extensions in Table 3.1 were added or changed in Release 5.

<table>
<thead>
<tr>
<th>Extension</th>
<th>Status</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARB_texture_cube_map</td>
<td>New</td>
<td>Same as EXT_texture_cube_map</td>
</tr>
<tr>
<td>ARB_texture_env_add</td>
<td>New</td>
<td>Same as EXT_texture_env_add</td>
</tr>
<tr>
<td>ARB_transpose_matrix</td>
<td>New</td>
<td></td>
</tr>
<tr>
<td>GL_ARB_texture_compression</td>
<td>New (5.16)</td>
<td>To replace S3_s3tc</td>
</tr>
<tr>
<td>NV_blend_square</td>
<td>New</td>
<td></td>
</tr>
<tr>
<td>S3_s3tc</td>
<td>New</td>
<td>Deprecated</td>
</tr>
<tr>
<td>EXT_clip_volume_hint</td>
<td>Removed</td>
<td></td>
</tr>
<tr>
<td>EXT_cull_vertex</td>
<td>Removed</td>
<td></td>
</tr>
<tr>
<td>GL_NV_light_max_exponent</td>
<td>Renamed</td>
<td>Was GL_EXT_light_max_exponent</td>
</tr>
</tbody>
</table>

OpenGL Performance Enhancements

A number of features are significantly improved in Release 5.

- For RIVA TNT and TNT2, polygon offset is faster.
- For GeForce 256 and Quadro, a number of improvements have been made:
 - `glDrawPixels()` and `glReadPixels()` have been made faster
 - display lists use AGP memory for better performance
 - large texture sets are handled more efficiently by the texture manager
 - vertex arrays with two-sided lighting are faster
 - compiled vertex arrays are faster for primitives that use multitextured `TexCoord2f+Color4ub+Vertex3f`
 - vertex array range extension is fully functional
- Control Panel enables accelerated full-scene anti-aliasing (GeForce, Quadro, GeForce2)
- multi-monitor hardware is accelerated on Windows 2000
- `GL_WGL_swap_interval` extension can change V-sync behavior
- V-sync is on by default (default behavior is selectable with the Control Panel)
- default anisotropic filtering can be triggered by checking the anisotropic filtering box on the Control Panel
- enabling `GL_POLYGON_SMOOTH` no longer forces software rendering, resulting in much better performance at some cost in visual quality
Direct3D

Release 5 contains the following Direct3D changes:

- accelerated full-scene anti-aliasing is enabled (GeForce, Quadro, GeForce2)
- limited three-stage setup is now possible
- D3DVTXPCAPS_MATERIALSOURCE7 capability bit is now disabled (leaving the driver with DirectX 6 material source capabilities)

The following Registry keys are useful for applications that do not blit correctly:

- FLUSHAFTERBLITENABLE is a new Registry key that controls the wait-after-blit condition when the DDBLT_WAIT flag is set.
 (Default is DISABLED—do not wait.)
 Note: This Registry key was formerly named WAITAFTERBLITENABLE.

- FORCEBLITWAITFLAGENABLE is a new Registry key that forces the DDBLT_WAIT flag to be set for all blits, which prevents applications that do not check the return value from unexpectedly losing blits.
 (Default is DISABLED.)

- LIMITMAXQUEUEDFBBLITSENABLE is a new Registry key that limits the maximum number of queued blits to the front buffer to a value set by the PRERENDERLIMIT Registry key, which is 3 by default.
 (Default is DISABLED.)

Control Panel

NVIDIA now provides Control Panel tabs for Windows NT 4.0 and Windows 2000.
Before You Begin

Note: In order to access the latest version of the NVIDIA display menu and control panel, the latest version of the NVIDIA ForceWare graphics display driver for your Windows operating system must be installed on your computer.

• If you do not have System Administrator access privileges, it is assumed that the person with System Administrator access in your organization will set up and install the NVIDIA ForceWare graphics display driver on your computer.
Chapter 4
NVIDIA Driver Installation and Control Panel Access

- For details on configuring and using the nView Desktop Manager application component of the NVIDIA ForceWare graphics driver, see the *NVIDIA ForceWare Graphics Driver: nView Desktop Manager User’s Guide*.

About the NVIDIA Graphics Driver Installation

NVIDIA graphics driver installation provides both an .inf file-based installation method and an InstallShield (setup.exe) Wizard-based installation method.

Note: Under Windows 2000, the NVIDIA graphics driver is installed in Span mode. If you are running under Windows 2000, you will need to follow additional steps to install and uninstall nView Dualview mode. For details, see “Initial Installation of nView Dualview Mode — Windows 2000” on page 75 and “Enabling nView Dualview Mode After Initial Installation — Windows 2000” on page 78.

Installing the NVIDIA ForceWare Graphics Drivers

1. Follow the instructions on the NVIDIA .com Web site driver download page to locate the appropriate driver to download, based on your hardware and operating system.

2. Click the driver download link.
 The license agreement dialog box appears.

3. Click **Accept** if you accept the terms of the agreement, then either open the file or save the file to your PC and open it later.
 Opening the EXE file launches the NVIDIA InstallShield Wizard.

Follow the instructions in the NVIDIA InstallShield Wizard to complete the installation.

File Locations

- The installation process copies all necessary files for operation into the appropriate directories.
- The nView system files are copied to your `Windows\System` directory.
- nView Desktop Manager “profile” (.tvp) files are saved in the `Windows\nView` directory. See “Preserving Settings Before Upgrading Your Software” on page 48.
Chapter 4
NVIDIA Driver Installation and Control Panel Access

Note: Depending on the version of the NVIDIA driver previously installed, profiles may also be located in the Documents and Settings\All Users\Application Data\nView_Profiles directory.

Preserving Settings Before Upgrading Your Software

Before uninstalling or installing software, you can preserve your nView Desktop Manager and/or NVIDIA display settings by using the nView Desktop Manager Profiles features.

Note: Follow the steps below and/or refer to the NVIDIA nView Desktop Manager User’s Guide for details. Under Windows XP/2000 and Windows NT 4.0, you must have, at least, Power User access privileges in order to create or save a profile. (Refer to Windows Help if you need an explanation of Power User access rights.)

Follow the steps below and/or refer to the NVIDIA nView Desktop Manager User’s Guide for details.

1 Open the nView Desktop Manager Profiles page (Figure 4.1).

Figure 4.1 nView Desktop Manager — Sample Profiles Page
Chapter 4
NVIDIA Driver Installation and Control Panel Access

To preserve your current settings, you can use either the Save or the New option from the nView Desktop Manager Profiles page:

- If you want to overwrite the currently loaded profile with your changed settings, use the Save option. Notice that a warning message indicates that you are about to overwrite the selected profile.
- If you want to retain the currently loaded profile and want to save your changed settings to a new file, click the New option. Enter a name and description of the profile in the New Profile dialog box. For example, you can name this profile My Settings.

If you created a new profile, you will see the name of the newly created profile in the profiles list.

To customize the settings, you can select or clear any of the settings check boxes.

Click Save to return to the main Profiles page.
Chapter 4
NVIDIA Driver Installation and Control Panel Access

If you overwrote a current profile, the same profile name is retained in the list.

Note: nView Desktop Manager profile (.tvp) files are saved in the Windows
nView directory. Depending on the version of the NVIDIA driver previously
installed, profiles may also be saved in the Documents and Settings\All
Users\Application Data\nViewProfiles directory.

6 Now you can uninstall your current driver for a driver upgrade.

7 After you restart your computer following an NVIDIA new driver install, you can
easily load the saved profile from the Profiles page of nView Desktop Manager.

About Using Saved Profiles in Another Computer

You can easily use any saved profile (.tvp file in the Windows\nView) from one
computer and use it in another computer, if you want. You’ll need to copy it to the
Windows\nView directory of a computer that has the NVIDIA ForceWare graphics
display driver, etc. installed properly. Then this profile can be loaded from another
computer from the nView Desktop Manager Profiles page just as it can from your
original computer.

NVIDIA Display Setup Wizards

After a fresh installation of the NVIDIA Release 70 graphics display driver and
restarting your computer, one or both of the NVIDIA display wizards (Display
Wizard or TV Wizard) are automatically invoked, depending on the types of
displays that are connected to your graphics card — i.e., analog or digital display,
television, or HDTV. The wizards help set up the most commonly used nView
display modes, including screen resolution and output.

Note: On subsequent session using the NVIDIA display driver, you can manually
start any one of these wizards by clicking either the Display Wizard or the TV
Wizard button from the Desktop Management page (Figure 4.3).

To see sample Wizard pages, see Appendix C, “NVIDIA Setup Wizard Pages”
on page 203.
Uninstalling the NVIDIA Display Driver

Note: It is strongly recommended that you follow the steps in this section to completely uninstall the existing NVIDIA driver installed on your computer before you install a new version of the driver.

To uninstall the NVIDIA ForceWare graphics display driver, follow these steps:

1. From the Windows taskbar, click Start > Settings > Control Panel to open the Control Panel window.
2. Double click the Add/Remove Programs item.
3. Click the NVIDIA Display Driver item from the list.
4. Click Change/Remove.
Chapter 4
NVIDIA Driver Installation and Control Panel Access

5 Click **Yes** to continue.

A prompt appears asking whether you want to delete all of the saved nView profiles.

- If you click **Yes**, all of the nView software and all of your saved profiles will be deleted.
- If you click **No**, the nView software is removed, but the profile file are saved in the `Windows\nView` directory on your hard disk.

Your system now restarts.

Accessing the NVIDIA Display Control Panel Pages

Once your NVIDIA ForceWare graphics display driver is installed, you can easily access the driver features from a convenient menu. You can quickly access the **NVIDIA display menu** that gives you direct access to the NVIDIA display control panel pages.

For quick access, you can use either the **Desktop Access** or the **NVIDIA Settings Menu — Windows Taskbar Access** access method, explained below.

Note: When needed, you can still access the NVIDIA display control panel pages through the Microsoft Display Properties **Settings > Advanced** option. (See “Windows Display Properties Setting Access” on page 56.)

Desktop Access

1 Right click on your Windows desktop to open the desktop menu.

2 If you do not see the menu item “**NVIDIA Display,**” follow the procedure in “Adding NVIDIA Menu Options to the Windows Desktop Menu” on page 164, and then continue to the next step.

3 Click **NVIDIA Display** (Figure 4.4).

You will see one or more of the descriptive EDID display names as shown in the examples in Figure 4.4. The display names that appear are based on the number and type of display(s) that are connected to your computer and whether you are in nView Dualview mode. These display names are also viewable from the nView Settings page (Figure 4.11).
Note: If you have two displays connected, both displays appear and are accessible on the desktop menu only if nView Dualview mode is enabled. One your primary display appears if any other nView display mode is enabled.

Figure 4.4 NVIDIA Display Options on the Windows Desktop Menu

Note: For example, if you have multiple displays connected to an NVIDIA dual-display graphics card, in order to see both of your displays, you must be in nView Dualview mode. In nView Clone or Span mode, you can only see one display because Windows considers the displays as a “single” display in these modes. For details, see “About Display Numbering” on page 68 and “About Renaming Displays” on page 69 in Chapter 5, Using nView Multi-Display Settings.

4 Select the display for which you want to view the NVIDIA display control panel.
Chapter 4
NVIDIA Driver Installation and Control Panel Access

During first use of the driver, the “default” page that opens is always the main NVIDIA GPU page as shown in Figure 4.9. On subsequent use, the actual NVIDIA control panel page that opens will be the page that was open when you last closed the NVIDIA control panel.

Shortcut to Playing Video Files on Any Display

You can now use the NVIDIA display selection shortcut feature to play video files on any selected display.

1 As shown in Figure 4.5, right click on a video file to open its context menu.

Figure 4.5 NVIDIA Display Options from a Video File Context Menu
2 Select the NVIDIA option Play On My and then choose the display on which you want to play the video.

Note: To configure full screen video display, see “Using Full Screen Video Settings” on page 155.

NVIDIA Settings Menu — Windows Taskbar Access

1 Make sure you have added the NVIDIA Settings menu icon to your Windows taskbar notification area. For details, see “Adding the NVIDIA Settings Menu to the Windows Taskbar” on page 161.

2 From your Windows taskbar, click the NVIDIA Settings menu icon (Figure 4.6) to display the types of menus shown in Figure 4.7 and Figure 4.8.

Figure 4.6 NVIDIA Settings Menu Icon in the Windows Taskbar Notification Area

![NVIDIA Settings Menu Icon](image1)

Windows Taskbar NVIDIA Settings menu icon

Figure 4.7 NVIDIA Settings Sample Menu

![NVIDIA Settings Menu](image2)

3 Click NVIDIA Display (Figure 4.7) and then select the type of display.

The NVIDIA display control panel appears (Figure 4.9).

Note: Figure 4.8 shows another view of the NVIDIA Settings menu. You can use this menu to quickly access the same NVIDIA ForceWare graphics display driver-based settings that you can access in the regular NVIDIA display menu shown in Figure 4.9.
Chapter 4
NVIDIA Driver Installation and Control Panel Access

Figure 4.8 NVIDIA Settings Sample Menus with Four Connected Graphics Cards

Windows Display Properties Setting Access

You can still access the NVIDIA display control panel through the Microsoft Display Properties Settings > Advanced option, if needed.

1 Right click from your Windows desktop to open the desktop menu.

2 Select Properties and then the Settings tab.

3 Click Advanced and then click the NVIDIA GPU tab.
 The NVIDIA display control panel with menu appears (Figure 4.9).

Using the NVIDIA Display Menu

From the NVIDIA display menu (Figure 4.9), you can access all the NVIDIA display control panel pages where you can configure many NVIDIA driver features.

To view any of the NVIDIA display control panel pages, simply click a menu item from the NVIDIA display menu.

Note: The nView Display Settings menu item appears only when you have more than one display connected, as shown in Figure 4.9. Figure 4.10 shows the menu when only one display is connected; the example is for a notebook computer.
Figure 4.9 NVIDIA Display Menu Showing the GPU Page—Multiple Displays Connected

NVIDIA display menu showing the main NVIDIA GPU page.

Note: The nView Display Settings menu item appears when multiple displays are connected.

Click the **green button** to toggle between hiding and opening the NVIDIA display menu.

Note: When the menu is hidden, you can also click the **Additional Properties** button to reopen the menu.

System information details selected aspects of your system than could affect overall graphics performance.

Graphics card information details the hardware aspects of the currently selected NVIDIA GPU.

Click the **NVIDIA Information >>** button to open a menu from which you can choose to update your NVIDIA driver, send feedback to NVIDIA, keep current with NVIDIA news, products, and demos, and see NVIDIA display driver version and file information.

Browse the NVIDIA Web site (www.nvidia.com)
To toggle between hiding and showing the NVIDIA display menu, click the green button on the green button that appears on any NVIDIA display menu page (Figure 4.9). You can also click the Additional Properties button to show the menu when it is hidden (Figure 4.9).

You can resize the NVIDIA display menu by directly manipulating it with your mouse.

The NVIDIA GPU Page

As mentioned previously, during first use of a newly installed NVIDIA driver, the “default” page that opens is always this main NVIDIA GPU page, as shown in the Figure 4.9 example.

This GPU page contains system and graphics card information. You can also use the NVIDIA Information >> button (Figure 4.9) to access a menu from which you can choose to update your NVIDIA driver, send feedback to NVIDIA, keep current with NVIDIA news, products and demos, and view NVIDIA display driver version and file information.
Chapter 4
NVIDIA Driver Installation and Control Panel Access

Other NVIDIA Display Menu Items

This section gives an overview of the pages associated with the other NVIDIA display menu items

- **nView Display Settings** page is shown in Figure 4.11.

Figure 4.11 NVIDIA Display Menu Showing nView Display Settings Page

EDID display names

EDID display names
Chapter 4
NVIDIA Driver Installation and Control Panel Access

Note: This menu item only appears if you have more than one display connected. For complete details on using the nView Display Settings features, see the next chapter “Using nView Multi-Display Settings” on page 63.

• Performance and Quality Settings — see “Adjusting Performance and Quality Settings” on page 135
• Video Overlay Settings — see “Using Video Overlay Settings” on page 153
• Full Screen Video — see “Using Full Screen Video Settings” on page 155.
 Note: This menu item only appears if you have more than one display connected and the nView Display Mode list is not set to Single display.
• Tools — see “Using the Tools Page” on page 160
• PowerMizer™ — for mobile computers only; see “Adjusting PowerMizer Settings — Only for Notebook Computers” on page 182.
• NVRotate™ — see “Using NVRotate Settings” on page 166.
• Temperature Settings menu option is available on newer GPUs, such as GeForce FX, and on certain older GPUs. “Adjusting Temperature Settings” on page 169.
• Screen Resolutions & Refresh Rates É “Changing Screen Resolutions and Refresh Rates” on page 171
• Desktop Manager — see the “NVIDIA ForceWare Graphics Drivers nView Desktop Manager User’s Guide” Release 70 driver version.
• Menu Editing — see “Editing the NVIDIA Display Menu” on page 179

Using the NVIDIA Display Menu Help and Tool Tips

Context Help

You can obtain context Help (Figure 4.12) for any of the settings and options on the NVIDIA display control panel page by using any one of these methods:

• Select or move your mouse pointer to the option for which you want help and then press F1, or
• Click the “?” icon located on the top right corner of the NVIDIA display control panel page you have open, move the “?” icon over the option for which you want help, then click your mouse again to display the help.
Tool Tips

Windows-style tool tip (pop-up) Help appears when you hover your mouse pointer on an item that is partially obscured. For example, you can place you mouse on any of the long NVIDIA menu names that may be partially obscured (such as Performance and Quality Settings) and be able to view the name in its entirety.

Tool Tips for Disabled Settings

When an option or setting is disabled (grayed) on any NVIDIA display control panel page, you can place the mouse pointer on the disabled option for a couple of seconds to see “tool tip” help describing the reason it is disabled.

An example of this kind of tool tip Help is shown in Figure 4.13.
Figure 4.13 NVIDIA Display Menu — Sample Tool Tip for Disabled Settings

Sample tool tip help for disabled settings

Antialiasing settings

This control is disabled because the corresponding Application-controlled setting is checked.

To manually specify these settings, uncheck the associated Application-controlled check box.
Chapter 5
Using nView Multi-Display Settings

This chapter contains the following major sections:

- “nView Multi-Display Applications” on page 65
- “nView Display Modes” on page 63
- “About Display Numbering” on page 68
- “nView Display Settings — Renaming a Display” on page 70
- “Using nView Dualview Mode” on page 73
- “Using nView Span Modes” on page 78
- “Using nView Clone Mode” on page 83
- “Switching Between nView Dualview and Span/Clone Modes — Windows 2000” on page 89
- “Enabling nView Multiview Mode — Only for NVIDIA Quadro NVS-based Graphics Cards” on page 89
- “Arranging Displays on the Settings Page” on page 90.

nView Display Modes

The nView Display Settings page provides several display modes for your multi-display configuration.
When using NVIDIA GPU-based graphics cards that support multiple displays, there are three ways to run multi-display configurations under most operating systems; Dualview, Span, or Clone mode. These nView display modes are available from the nView Display Settings page as shown in Figure 5.1 and Figure 5.2.

Figure 5.1 nView Single Display Mode — Windows XP/2000

- **Single display** mode indicates that only one of your connected displays is used.

 Note: If you have only one display that is connected, you will not see the nView Display Settings option on the menu.
- **Clone** mode indicates that both displays in the display pair show images of the same desktop.
- **Horizontal Span** mode indicates that both displays in the display pair function as one wide virtual desktop. The width of each display is half the width of the total virtual desktop width.
- **Vertical Span** mode indicates that both displays in the display pair function as one tall virtual desktop. The height of each display is half the height of the total virtual desktop height.
Figure 5.2 nView Multi-Display Mode — Windows XP/2000

- **Dualview mode** (Figure 5.2, Figure 5.3, and Figure 5.4) indicates that both displays in the display pair function as one virtual desktop. Unlike Horizontal Span or Vertical Span mode, Dualview treats each display as a separate device. This means that the Windows taskbar will not be stretched across displays and 3D applications are not accelerated as efficiently as when the application spans displays.

nView Multi-Display Applications

For extensive information on nView applications, click the **Products** tab from the NVIDIA Web site: **www.nvidia.com**

Engineering or mechanical CAD applications can use multiple displays for different directional views of an object or a building, such as a front or side view or even a wireframe model on one screen and a textured version of the same model on another. Many professional applications offer extensive graphical user interfaces, which can be left fully enabled and visible on one display, while the second display remains unobstructed for viewing the actual work.
Training and Presentation — nView Clone mode (see “Enabling nView Clone Mode” on page 83), where two displays show identical images, is useful for presentations. A presenter may use the smaller display on the podium, while a projector display reflects the presentation to the audience. In training applications, the instructor can see what the student is doing under nView Clone mode. The ability to see the presentation while it’s being projected can be especially useful when using mobile computers.

Virtual Desktop (see “Enabling Virtual Desktop — Clone Mode” on page 85), a sub-feature of nView Clone Mode, is useful for flat panels and analog displays with limited resolution and is used to set a larger than viewable area on the second display, which supports full pan-and-scan of the entire desktop area.

Digital content creation (DCC) applications can use one display for toolbars and palettes and the other for rendered output. Additionally, many real-time or game development environments allow the authoring tools or game engine code to be visible on one display, while showing the art or game engine in a full screen, game play-like mode on the second display.

Graphics Artists can have common applications such as Adobe Photoshop or 3D Studio Max open with the palettes and menus on one display and the other display dedicated to workspace. Writers can use one display for research and the other for writing.

Financial applications, such as stock trading applications, can use a pair of large digital flat panels. This would allow you to watch real-time stock data on one screen and use the other screen for trading activity.

Video editing applications would use one large computer display and one NTSC display. Since nView technology allows decoupling of refresh rates, the primary (editing) display could be a high-resolution RGB display for running the application (Adobe Premiere, for example), while the second display can be an NTSC or S-Video display for checking the video output for proper color balance and quality.

Entertainment applications can use multiple display support in several ways. Game titles, such as Microsoft’s Flight Simulator 2000, support multiple displays out of the box. With nView Clone mode, game play can be sent to a big screen TV or even to a VCR.

Home theater systems can take advantage of the DVD capabilities of your computer. Simply hook up a large screen television as your second display and you can watch DVDs — without having to buy a dedicated DVD player. See “Using Full Screen Video Settings” on page 155.
Television and Movies — Using the NVIDIA display “video mirror” feature, you can watch TV and any other video while you work. See “Using Full Screen Video Settings” on page 155.

Accessing the Display Context Menus

The *display icons* on the nView Display Settings page display a graphical representation of your nView display configuration — i.e., the *single* (Figure 5.1) OR *pair* of displays (Figure 5.2 and onward) connected to your computer and being used by the nView display mode you selected from the nView display modes list.

1. Click a display image to select it as your current display.
2. Then right click the display image to display a popup context menu (Figure 5.3) from which you can adjust settings for that display.
Chapter 5
Using nView Multi-Display Settings

Available settings include:

- **Color Correction.** See “Adjusting Desktop Colors” on page 130.
- **Device adjustments.** See “Configuring Displays” on page 92.
- **Select TV format.** See “Configuring Displays” on page 92.
- **NVRotate.** See “Using NVRotate Settings” on page 166.
- **Change Resolution.** See “Changing Screen Resolutions and Refresh Rates” on page 171.

Note: You can access these same menu options by clicking the Device Settings >> option at the bottom of the nView Display Settings page.

About Display Numbering

When you are running in nView Single display, Clone, or Dualview mode, the numeric part of the display image identifier such as 1 (or 2), 1 and 2, 1a and 1b, or 2a and 2b reflect the Windows display number, as viewable from the Windows Display Properties page.

Note: The Windows operating system only assigns numbers to displays running in native Windows multi-display mode — i.e., Dualview, which is common to both Windows and NVIDIA — but not Clone mode, which is an NVIDIA nView-specific display mode.

nView Dualview mode. The display images on the nView Display Settings page are numbered as separate displays, 1 and 2, as in the Windows Display Properties page.

nView Clone or Span mode. Multiple displays running in nView Clone or nView Span mode also appear as one “Dualview” head to Windows and therefore the Windows Display Properties page displays only a single display image. The display images on the nView Display Settings, however, may be numbered as 1a and 1b (or 2a and 2b) where the numeric value remains the same with only the alphabetic part of the number (a or b) designating separate heads indicating dual display.
About Renaming Displays

In this release of the NVIDIA driver, you can also “rename” the display names that appear on your desktop context menu shown in Figure 4.9 of the previous chapter. On your nView Display Settings page, these display names are also always visible in the Primary Display and Secondary Display fields and when you rest your mouse on a display image, as shown in Figure 4.11:

To rename a display name, follow these steps:

1. From the nView Display Settings page, right click on any of your display (monitor) icons, or click the Device Settings >> button to display the context menu.

2. Select Rename to open the Rename Display dialog box, as shown in Figure 5.4.

3. Enter a name in the Rename edit box and click OK to return to the nView Setting page.

Notice that the new name now appears on the display image and the Primary Display/Secondary display box, as shown in Figure 5.4.
Chapter 5
Using nView Multi-Display Settings

Figure 5.4 nView Display Settings — Renaming a Display

1. Select Rename from the display’s context menu to open the Rename Display dialog box.

2. Then enter a new name and click OK to show the new name on the nView Display Settings page (Fig. 5.5).
Chapter 5
Using nView Multi-Display Settings

Figure 5.5 nView Display Settings — Renamed Display

NVIDIA Multi-Display Support

The following are sample display combinations that NVIDIA GPU-based multi-display cards support when used with the NVIDIA ForceWare graphics display driver:

- Two RGB displays with second RAMDAC (digital-to-analog converter)
- Two analog flat panels
- Two digital flat panels
- One digital flat panel and one analog flat panel
- One digital flat panel and one RGB display
- One RGB display and one TV
- One RGB display and one analog flat panel (with second RAMDAC)
Chapter 5
Using nView Multi-Display Settings

- One analog flat panel and one TV

Note: Actual combinations supported on a given graphics card will vary.

Setting up a multi-display graphics card involves installing the graphics card on a computer, connecting the displays to your computer, and installing the current version of the NVIDIA ForceWare graphics display driver. After restarting your computer, the multiple display modes of the graphics cards installed are fully functional.

When using any nView multi-display mode, you can easily switch between the displays by following these steps:

1. Open the nView Display Settings page.
2. Click the Display pairs list and click the paired display combination you want.

For example if you have an analog display, a digital display, and a TV connected to your computer, your choices are as listed below and shown in Figure 5.6.

Figure 5.6 nView Display Pair Options

- Analog display + digital display
- Digital display + analog display
- TV + digital display
Primary and Secondary Displays

nView Display Settings

On the NVIDIA nView Display Settings page, the primary display is designated by the display icon on the left and the secondary display is designated by the display icon on the right.

Windows Display Properties Settings

On the Windows Display Properties Settings page, you can determine the primary display by placing your mouse pointer on a display icon where the tool tip text indicates “Primary”.

Using nView Dualview Mode

Note: You must have at least two displays connected to your computer to be able to view the nView Span mode settings.

nView Dualview mode treats every display as a separate device. Dualview mode is sometimes called “native mode” because it is the native mode supported by Windows multi-display configurations; i.e. it is the multi-display mode defined by Microsoft and supported by Microsoft Windows operating systems.

Dualview mode is equivalent to selecting the

Extend my Windows desktop onto this monitor. . .

setting on the Windows Display Settings page, which gives you an extended workspace.

When you start Windows 9x or Windows XP using multiple displays, Windows is pre-configured for Dualview mode. This is not the case for Windows 2000. To enable Dualview in Windows 2000, you need to install Dualview from the nView Display Settings page, as explained in subsequent sections.

- Digital display + TV
- Analog display + TV
- TV + Analog display
Chapter 5
Using nView Multi-Display Settings

Sample nView Display Setting pages in Dualview mode are shown Figure 5.2, Figure 5.3, and Figure 5.4.

Key Features

Dualview support and functionality include the following:

- Support for advanced NVIDIA features such as **Full Screen Video Mirroring** and **Overlay**. (See “Using Full Screen Video Settings” on page 155 and “Using Video Overlay Settings” on page 153.)

 Note: Windows NT 4.0 in nView Multiview mode does not support the “video mirroring” feature.

- Windows places the taskbar on only one display and replicates (rather than stretches) the background on each display as shown in Figure 5.7 and Figure 5.8.

- When you maximize an application, it maximizes only to the single display, and so on. Figure 5.7 and Figure 5.8 show examples of Dualview systems where the left and right displays are running at different screen resolution. Notice that the background is not stretched across the displays and the taskbar appears on a single display instead of being stretched across displays.

 Figure 5.7 Multiple Displays in nView Dualview Mode (1)

| Display 1 — resolution = 1280 x 768 | Display 2 — resolution = 800 x 600 |

 - **Taskbar** is not stretched across displays.
 - **Background** is not stretched across displays.

- You can set different color depths per display.
• You can arrange your multi-display desktop to be any shape; it does not have to be limited to “rectangular” as in nView Span modes.

Figure 5.8 Multiple Displays in nView Dualview Mode (2)

Display 1 — resolution is 1280 x 768

Display 2 — resolution is 1024 x 768

Initial Installation of nView Dualview Mode — Windows 2000

Note: When you start Windows 2000 with an NVIDIA GPU-based multi-display graphics card (or multiple NVIDIA GPU-based graphics cards), you are not yet
in Dualview mode. You can confirm this when you view the Windows Display Properties Settings page and see only one display image in the display.

Follow these steps to enable Dualview.

1. Make sure your multi-display NVIDIA GPU-based graphics card is properly installed in your computer and securely connected to your displays. Make sure your displays are turned on and the NVIDIA display driver has been properly installed on your computer.

2. After Windows starts up, right click on your desktop to open the Windows desktop menu. Then select the display for which you want to open the NVIDIA display menu and select the nView Display Settings option.

3. Click the arrow in nView display modes list and select Install Dualview (Advanced) as shown in Figure 5.9.

4. When the prompt appears, click Restart Now.

Note: When the system starts up, you may see a series of Dualview installation prompts. It may take up to one minute for the first Dualview prompt to
After the system starts up, if the NVIDIA nView Desktop Manager Setup Wizard appears, run through the Wizard. (See the NVIDIA nView Desktop Manager User’s Guide for details.)

From your desktop, right click to view the Window desktop menu, then click Properties and the Settings tab.

You’ll notice that at least two display images appear on the Windows Display Properties Settings page, as shown in Figure 5.10, indicating Dualview mode.

Figure 5.10 Display Properties Settings — Dualview Mode (Windows 2000)

Click Advanced, the NVIDIA GPU tab, and the nView Display Setting menu option.

From the nView Modes list, select Dualview.

Follow the prompts to restart your computer again.

When you have returned to your desktop, open the nView Display Setting page and select Dualview from the nView Modes list.
Chapter 5
Using nView Multi-Display Settings

Enabling nView Dualview Mode After Initial Installation — Windows 2000

Switching back and forth between Dualview and Span/Clones mode under Windows 2000 is much faster after the initial Dualview installation session described in the previous section. On subsequent Dualview enabling sessions, you can use fewer steps, as follows:

1. From your Windows 2000 desktop, right click to view the Windows desktop menu, then click Properties > Settings > Advanced and then the NVIDIA GPU tab.

2. Click nView Display Setting from the NVIDIA menu and select Dualview from the nView Modes list.

3. Follow the prompts to restart your computer.

4. When you have returned to your desktop, go to the nView Display Setting page and select Dualview from the nView Modes list.

 Note: To switch back to Clone, Horizontal Span, Vertical Span, or, under certain configurations, Single Display mode, you will need to restart your computer, as prompted.

Using nView Span Modes

 Note: nView Span modes do not apply under Windows 9x operating systems.
 Note: You must have at least two displays connected to your computer to view the Span mode settings.

nView horizontal and vertical Span modes treat multiple displays as a single large desktop. In this mode, the desktop area is spread across both displays, however the operating system treats both displays as one large display. For this reason, the refresh rate, color depth, and resolution on both displays will be identical, and cannot be changed independently. The desktop may be “stretched” horizontally or “stacked” vertically, depending on your needs, as explained in “Using Horizontal & Vertical Span Modes” on page 80.

- nView Horizontal Span mode allows you to extend the Windows desktop across two displays horizontally. In this mode the two displays combine to form a wide, spanned display surface, which is useful when viewing items that are wider then a single display.
nView Vertical Span mode allows you to extend the Windows desktop across two displays vertically. In this mode the two displays combine to form a tall, spanned display surface, which is useful when viewing items that are taller than a single display.

nView Span modes supports the “video mirror” feature, where you may want to dedicate an application to one of the two displays or run the application across both displays. Examples include entertainment applications, digital video editing, and DVD playback. For details, see “Using Full Screen Video Settings” on page 155.

Note: Windows NT 4.0 Multiview mode does not support the Video Mirroring feature.

nView Span Modes vs. Dualview Mode Features

nView Horizontal and Vertical Span mode support and functionality include the following:

- DirectX or OpenGL applications in Span modes are fully accelerated.
- In nView Span mode, your Windows desktop is “stretched” or “spans” all of your displays. In Span mode, Windows treats the multiple displays as a single “logical” display connected to your computer — the real “physical” displays are combined together to give you this “logical” display.

 Figure 5.11 shows an example of running Span modes under Windows XP with both of the two displays set to 1280x1024 resolution. In this configuration, Windows recognizes only a single display running at 2x1280x1024 or 2560x1024.
- The key point to remember when running nView Span modes is that Windows does not detect that you have two displays connected — as far as it is concerned, you have an oversized display. This is the reason that you cannot use different bit depths or resolutions per display.

 Note: This also results in nView Span modes being slightly faster than Dualview mode because Windows only has to manage one display instead of two.
- Under nView Span modes, Windows “stretches” the background wallpaper out to cover your large “logical” display and it stretches the taskbar out to fill your large “logical” display, as shown in Figure 5.11. If you maximize an application, the application will be maximized to fill the large “logical” display screen — i.e., both displays.
Chapter 5
Using nView Multi-Display Settings

Figure 5.11 Multiple Displays in nView Horizontal Span Mode

Display 1
Display 2

- Taskbar is stretched across displays.
- Background is stretched across displays.

Under Windows XP/2000, you can run nView Span modes with more than two displays. For example, if you are using a Quadro NVS-based graphics card to which you have four displays connected, you can have two sets of two spanned displays.

If you are using a Quadro NVS-based graphics card, refer to the document titled “NVIDIA ForceWare Driver for Windows Using nView MultiView Modes with NVIDIA Quadro NVS-based Graphics Cards”

Using Horizontal & Vertical Span Modes

Note: Span modes do not work if you have only one display attached.

In Span mode, the Windows desktop area is spread across both displays. This mode can be set for multiple categories of displays, although display limitations may override the capabilities of your NVIDIA multi-display graphics card. For example, if the second display is an NTSC TV display, depending on the TV encoder on the graphics card, the resolution may not be set above 800 x 600 and the refresh rate cannot be set above 60 Hz. However, the computer’s analog display in such a configuration may have its refresh rate and resolution set much higher. The desktop may be “stretched” horizontally or “stacked” vertically, depending on user needs.
Due to operating system differences between Windows 9x and Windows NT 4.0/Windows 2000, the latter does not currently offer true multi-display support for Span modes using one NVIDIA multi-display graphics card. As a result, size of the actual desktop is limited to twice the smaller size of the two displays.

Note: The desktop can be extended either horizontally (Figure 5.12) or vertically (Figure 5.13).

Figure 5.12 nView Horizontal Span Mode — Windows XP

To access the nView Span modes, follow these steps:

1. Click the **Horizontal** or **Vertical Span** setting on the nView Display Settings page and click **Apply**.

2. Click **OK** and **Yes** when the messages appear.

 If you just switched from Standard (Dualview) to one of the Span modes, your secondary display will be activated. If needed, click **Detect Displays** to enable the displays.

5. If two graphics cards are installed, the Windows 2000 operating system does detect two devices.
Depending on whether you have Horizontal or Vertical Span mode enabled, you can drag your active windows, images, or icons horizontally or vertically to move them to the secondary display.

Note: Figure 5.12 and Figure 5.13 show the primary display is designated by a and the secondary display is designated by b. Both display are identified with the same number — 1 in this case (can also be another Windows display number, depending on your configuration) — because in nView Span mode, Windows doesn’t treat the primary and secondary displays as two separate displays. (For details on this concept, see the section “nView Span Modes vs. Dualview Mode Features" on page 79.) From the Windows Display Properties Settings tab, if you click Identify when you are in nView Span mode, you will see the same number displayed on each of your active displays.

Figure 5.13 nView Vertical Span Mode — Windows XP
Using nView Clone Mode

Note: You must have at least two displays connected to your computer in order to see the Clone mode setting.

nView Horizontal Span, Vertical Span, Clone, and Dualview modes support advanced NVIDIA features such as Video Mirroring.

In Clone mode, two displays show identical images, which is useful for presentations. For example, Clone mode is useful when giving presentations. The presenter may have a small display or other display on the podium while a projector or presentation quality display shows the larger image to the audience.

Full support for virtual desktops is available for flat panels and displays with limited resolution. Virtual desktops offer full pan-and-scan of the desktop and can be configured for one or both displays. See Enabling nView Clone Mode in the next section.

In application Zoom mode (a feature of nView Desktop Manager), part of the image from the primary display is shown on the secondary display, but zoomed in. This mode can be used for image editing, close-up work in modeling or CAD applications, or image processing and mapping applications.

nView Clone mode supports the “Video Mirror” feature, where you may want to dedicate an application to one of the two displays or run the application across both displays. Examples include entertainment applications, digital video editing, and DVD playback. See “Using Full Screen Video Settings” on page 155.

Enabling nView Clone Mode

1. Click **nView Display Setting** from the NVIDIA display menu.

2. From the nView Modes list, select **Clone** and click **Apply**.

 Figure 5.14 show the primary display is designated by **a** and the secondary display is designated by **b**. Both display are identified with the same number — 2 in this case (this number can be another Windows display number, depending on your configuration) — because nView Clone mode implies the two displays are duplicate desktop images and, therefore, Windows identifies them with the same number.
Chapter 5
Using nView Multi-Display Settings

Figure 5.14 nView Clone Mode — Analog + Digital Displays with Context Menus

From the Windows Display Properties Settings page, if you click Identify when you are in nView Clone mode, you will see the same number on both your displays.

Figure 5.15 shows nView Clone mode using a digital display as a primary display and a TV as a secondary display.
Chapter 5
Using nView Multi-Display Settings

Enabling Virtual Desktop — Clone Mode

Before You Begin

If the maximum resolution of the secondary display is by default set to less than the current resolution of the primary display, once you enable Clone mode from the nView Display Setting page, Virtual Desktop will already be enabled.

Note: You can test if Virtual Desktop is enabled by moving your mouse vertically and horizontally across your secondary display’s desktop. If the desktop scrolls as you move your cursor to the far edges of the display, then Virtual Desktop is already enabled. However, you still may want to adjust the resolutions of the primary and/or secondary device using the steps below if you want to further adjust the screen resolutions of either display.

You can use the NVIDIA “Screen Resolution & Refresh Rates” (see “Changing Screen Resolutions and Refresh Rates” on page 171) menu option to adjust the screen resolution of your primary and/or secondary display so that the resolution of the secondary device is less than the primary, which allows you to enable Virtual Desktop, a useful feature for displays with limited resolution — newer flat panels offer high resolution. This feature lets you pan-and-scan the entire desktop area on
Chapter 5
Using nView Multi-Display Settings

the secondary display when its resolution is set to less than the value set on the primary display.

Procedure

Follow these steps to enable Virtual Desktop:

1. From your Windows desktop, right click to view the Windows desktop menu, then click Properties > Settings > Advanced and then the NVIDIA GPU tab.

2. From the NVIDIA menu, click the nView Display Setting option.

3. From the nView Modes list, select Clone and click Apply.

 Note: If you just switched to Clone from Dualview, you’ll need to follow the prompts to restart your computer. Then, when you have returned to your desktop, go to the nView Display Setting page and select Clone from the nView Modes list and click Apply.

4. From the nView Display Setting page, right click display image (i.e., 1a or 1b) to display the pop-up menu and click Change Resolution (Figure 5.16).

Figure 5.16 nView Clone Mode with Virtual Desktop Enabled — Disabling Panning

Click Change Resolution from your secondary display’s context menu.
Chapter 5
Using nView Multi-Display Settings

The Screen Resolution & Refresh Rates page appears, as shown in Figure 5.17.

Figure 5.17 Configuring Screen Resolution for Virtual Desktop

5 Use the Screen resolution slider to set the resolution so that the primary display’s resolution is greater than the secondary display’s resolution.

 Note: If you set the same screen resolution value for both primary and secondary displays, you cannot pan/scan the desktop area on the secondary display; both displays will remain static.

6 Use the Screen resolution slider to set the resolution so that the primary display’s resolution is greater than the secondary display’s resolution.

 Note: If you set the same screen resolution value for both primary and secondary displays, you cannot pan/scan the desktop area on the secondary display; both displays will remain static.

7 Optional: If you want, you can select a refresh rate from the list box.

8 Click Apply and OK close the Screen Resolution & Refresh Rates page and return to the nView Display Setting page.

 Note: Now that you have adjusted the screen resolutions, notice that you can move your mouse horizontally and/or vertically all the way across the
desktop on your secondary display (i.e., display 1b) to pan and scan the desktop, thus enabling the Virtual Desktop feature.

Disabling Auto-Panning (Lock Pan Position)

Disabling the pan and scan feature (virtual desktop) results in locking the current pan position on the secondary clone display, letting you effectively freeze the virtual desktop at a certain position, which is useful for presentations or fine-detail work in applications.

If you want to disable the auto-panning on your secondary display, you do one of the following:

- Select the check box labeled **Disable auto-panning on secondary device (viewport lock)** or simply
- Select the **Lock Pan Position** check box on the popup menu on your secondary display (i.e., display 1b.)

The example in Figure 5.18 shows that the **Lock Pan Position** check box is selected, which also enables the equivalent **Disable auto-panning on the secondary device (viewport lock)** check box.

Figure 5.18 nView Clone Mode with Virtual Desktop Enabled — Disabling Panning

![Image of nView Clone Mode with Virtual Desktop Enabled — Disabling Panning](image)
Switching Between nView Dualview and Span/Clone Modes — Windows 2000

Note: Under Windows 2000, switching between nView Span/Clone and Dualview modes requires restarting your computer. (Under certain configurations, switching between Single Display mode and Dualview/Span/Clone may also require restarting your computer.)

1. From your Windows 2000 desktop, right click to view the Windows desktop menu, then click Properties > Settings > Advanced and then the NVIDIA GPU tab.

2. Click nView Display Settings from the NVIDIA menu.

3. From the nView Modes list, select Clone, Horizontal Span, or Vertical Span mode.

 Note: If you just switched to Clone, Horizontal Span, Vertical Span, or, under certain circumstances, Single Display mode from Dualview, you’ll need to follow the prompts to restart your computer.

4. When you have returned to your desktop, go to the nView Display Settings page and select Clone, Horizontal Span, or Vertical Span mode from the nView Modes list.

 Note: To switch back to Dualview mode, you will need to restart your computer, as prompted.

Enabling nView Multiview Mode — Only for NVIDIA Quadro NVS-based Graphics Cards

Note: nView Multiview mode is a custom mode that is only available when using the NVIDIA Quadro NVS GPU-based series of graphics cards.

The NVIDIA Quadro NVS is a series of multi-display graphics cards for professionals in the financial and non-linear editing (NLE) markets.

For further details on using this mode, see the NVIDIA Application Note titled “Using nView MultiView Modes with NVIDIA Quadro NVS-based Graphics Cards”
Chapter 5
Using nView Multi-Display Settings

Arranging Displays on the Settings Page

In nView Dualview mode, you can arrange displays on the Windows Properties Settings page to match the actual setup of your physical displays.

The examples shown in Figure 5.19 and Figure 5.20 are Windows XP, but the procedure explained below applies to all Windows operating systems.

When using multiple displays, the desktop can be extended horizontally and vertically, as well as at other angles by page. You can drag the images to the positions that represent how you want to move items between your displays.

Figure 5.19 Display Settings — Horizontal and Vertical

- For example, if you’re using two displays and you want to move [items from one display to the other by dragging left and right](Figure 5.19), position the images side-by-side.
- To move [items between displays by dragging up and down](Figure 5.19), position the images one above the other.
• To move items between displays by dragging at an angle, position the images diagonally (Figure 5.20). The positions of the images don’t have to correspond to the physical positions of your displays. That is, you can position the images one above the other even though your displays are side-by-side.

Figure 5.20 Display Settings — Diagonal
Chapter 6
Configuring Displays

This chapter contains the following major topics:

- “Adjusting Analog Display Settings” on page 92
- “Adjusting Digital Display Settings” on page 95
- “Adjusting Television (TV) Settings” on page 97

Adjusting Analog Display Settings

If your NVIDIA GPU-based graphics card is connected to an analog display, follow the steps in this section to access the analog display’s Device Adjustment window from which you can configure Screen Adjustment and Display Timing settings.

To access the Device Adjustments window for an analog display connected to your computer, follow these steps:

If you have only one display connected and you do not see the “nView Display Settings” option on the NVIDIA display menu, you will see the “Screen Adjustment” and “Display Timing” option instead:

1. Click Screen Adjustment to open the Screen Adjustment page. See “Screen Adjustment” on page 93.

2. Click Display Timing to open the Display Timing page. See “Display Timing Settings” on page 94.
If you have more than one display connected, follow these steps.

1. Click nView Display Settings from the NVIDIA display menu.
2. Left click on the display image that represents your analog display to select it.
3. Right click on that display image and click Device Adjustments to open the Device Adjustment page (Figure 6.1), which contains the Screen Adjustment and the Display Timing pages.

 For details, see Screen Adjustment and Display Timing Settings in the next sections.

Screen Adjustment

The Screen Adjustment page is shown in Figure 6.1.

To adjust the screen position on your analog display, use the arrow positioning buttons for fine adjustments.

Figure 6.1 Screen Adjustment Settings — Analog Display
Display Timing Settings

The Display Timing page is shown in Figure 6.2. Select the proper timing mode for your analog display.

- **Auto-Detect** (default setting) allows Windows to receive the proper timing information directly from the analog display.

 Note: Some older analog displays may not support this feature.

Figure 6.2 Display Timing Settings — Analog Display

- **General Timing Formula (GTF)** is an older but widely used timing standard. However, newer display are switching to the CVT standard.
- **Discrete Monitor Timings (DMT)** timing is a set of pre-defined VESA timings. VESA updates this standard every year. If DMT timing is available for a specific mode, the NVIDIA display driver normally selects it instead of the GTF standard.
- **Coordinated Video Timings (CVT)** became the VESA standard on March 2003. CVT supports higher resolutions better than other timing standards.
• **Fixed Aspect Ratio Timing** forces the displayed image to retain the aspect ratio of the mode rather than aspect ratio of the analog display.
 Note: The driver may place a black border around the displayed image, as needed.
• **Enable doublescan for lower resolution modes.** Enabling this setting greatly improves image quality at lower resolutions, which is most useful for full screen video or computer games.

Adjusting Digital Display Settings

If your NVIDIA GPU-based graphics card is connected to a digital display, follow the steps in this section to access the display’s Device Adjustment page where you can configure some flat panel display settings.

If you have only one display connected and you do not see the “nView Display Settings” option on the NVIDIA display menu, you will see the “Screen Adjustment” option instead.

1. Click **Screen Adjustment** to access the digital flat panel settings page (Figure 6.3).
2. See the next section **Digital Display Settings** for configuration details.

If you have more than one display connected, follow these steps.

1. Click **nView Display Settings** from the NVIDIA display menu.
2. Select the display image that represents your digital display and then right click and select **Device Adjustments** to open digital flat panel settings page (Figure 6.3).
3. See the next section **Digital Display Settings** for configuration details.

Digital Display Settings

The digital display options are shown in Figure 6.3 and explained below.

• **Display Adapter Scaling.** Select this setting if you want lower-resolution images scaled to fit the flat panel. For example, if your flat panel has a maximum resolution of 1400x1050, an image with a resolution of 1024x768 will be scaled to appear on the screen at a 1400x1050 resolution.

• **Centered Output.** Select this setting if you want to display lower-resolution images *as is* in the center of the flat panel. For example, if your flat panel has a...
maximum resolution of 1400x1050, an image with a resolution of 1024x768 will be displayed in the center of the screen at a 1024x768 resolution with black borders.

Figure 6.3 Digital Display Settings

- **Monitor Scaling** is only available for digital flat panels that support multiple native resolutions.
- **Fixed Aspect Ratio Scaling.**

 Note: The availability of this setting depends on your display configuration. Select this setting if you want lower-resolution images scaled to fit the flat panel but preserve the aspect ratio of the image. For example, if your flat panel has a maximum resolution of 1680 x 1050, an image with a resolution of 1024 x 768 will be scaled to appear on the screen at a 1400 x 1050 resolution with black borders.
Adjusting Television (TV) Settings

If you have a television connected to your computer, follow the steps in this section to access page where you can choose the correct regional format for TV reception, choose the correct TV connection mode, and configure several TV display settings.

If your television is the only display connected to your computer and you do not see the nView Display Settings option on the NVIDIA display menu, you will see the following options on the menu: TV Settings and Screen Adjustment

Note: If you do not see the “TV Settings” or the “Screen Adjustment” pages, go to the information in the next bullet.

1. Click TV Settings to display the TV Settings page (Figure 6.4). For details, see TV Settings, the next section.
2. Click Screen Adjustment to open the TV Output page where you can configure TV display settings. For details, see “Device Adjustments — TV Output” on page 99.

If your television is the only display connected to your computer directly (or through a VCR or switch box or receiver) and you do not see the nView Display Settings option and also do not see the TV Settings and the Screen Adjustment option on the NVIDIA display menu, then follow these steps.

1. Open the Tools page by clicking the Tools option from the NVIDIA display menu. Figure 8.18 in Chapter 8 shows the Tools page.
2. Select the Force TV detection check box and click Apply.
3. You should now be able to see the TV Settings and Screen Adjustment options on the NVIDIA display menu.
4. Click TV Settings to display the TV Settings page (Figure 6.4). For details, see TV Settings, the next section.
5. Click Screen Adjustment to open the TV Output page where you can configure TV display settings. For details, see “Device Adjustments — TV Output” on page 99.

If you have more than one display connected, including your television, follow these steps.

1. Click nView Display Settings from the NVIDIA display menu.
2. Left click on the display image that represents your TV to select it.
3. Then right click on that display image and select Select TV format or Device Adjustments, depending on the task you want to perform.
4. Click Select TV format to display a list of the common TV regional settings and choose a setting that applies to your region.
Chapter 6
Configuring Displays

5 For additional settings, click **Advanced** to display the **TV Settings** page (Figure 6.4). See **TV Settings** in the next section for detailed information.

6 Click **Device Adjustments** to open the **TV Output** page where you can configure TV display settings. For details, see “**Device Adjustments — TV Output**” on page 99.

TV Settings

Figure 6.4 show a sample NVIDIA **TV Settings** page.

Figure 6.4 TV Settings

Signal Format

Click the **Signal format** list to access a regional signal format that is suitable for your locale. The list that appears allows you to select the format used in the country where you live.

Note: If your country is not in the list, select the country closest to your location.
Video Output Format

Click the **Video output format** connection list to specify the type of video connector, based on the output signal format supported by your regular television or HDTV, if you have one connected. For details on configuring an HDTV, see “Configuring HDTV” on page 104.

The default setting is **Auto-select** (Figure 6.4).

If you have the proper connector cable, **S-Video Out** generally provides a higher quality output than **Composite Video Out**.

If you are not sure about the type of video connector you should specify, choose **Auto-select**.

Device Adjustments — TV Output

You can customize your TV display settings from the TV Output page shown in Figure 6.5.

Note: Availability of settings on your TV Output page can vary from those shown in Figure 6.5 and depend on the “Internal” TV encoder on your NVIDIA GPU or the “external” TV encoder on the NVIDIA GPU-based graphics card you are using.

Screen Positioning

Repositioning the TV screen — To reposition the TV screen (desktop), click any of the long arrow buttons displayed on the outer top, bottom, left, and right edges of the TV display icon, as shown in the TV Output page in Figure 6.5.

Note: If the TV picture becomes scrambled or is blank due to over-adjustment, simply wait 10 seconds; the picture will automatically return to its default position. You can then begin your adjustments again. Once you have positioned the desktop where you want it, click **OK** or **Apply** to save the settings before the 10 second interval has elapsed.
Chapter 6
Configuring Displays

Figure 6.5 TV Output — Sample Page.

Resizing the TV Screen — To increase the size of your TV screen (desktop), click the arrows in the box on the right, inside the TV display image, as shown in Figure 6.5.

To decrease the size of your TV screen (desktop), click the arrows in the box on the left, inside the TV display image, as shown in Figure 6.5.

Brightness/Contrast/Saturation

Note: Availability of the Brightness, Contrast, and Saturation slider depends on TV encoder used on your NVIDIA GPU or NVIDIA GPU-based graphics card.

Use the Brightness, Contrast, and Saturation sliders to adjust the brightness, contrast, and saturation of the TV image.
Chapter 6
Configuring Displays

Flicker

Use the Flicker slider to adjust the amount of flicker filter you want applied to the TV signal.

Note: It is recommended that you turn off the Flicker filter completely (move slider all the way to the left) for DVD movie playback from a hardware decoder.

Overdrive

To use the Overdrive slider, select the check box and click Apply.

The overdrive range is between 0% and 100%.

When you set the slider to adjust “overdrive,” you are simultaneously adjusting the Brightness and Contrast slider to remove or reduce edge breaks — i.e., the balloon effect of the visible edges based on content. As you increase the overdrive value, the Brightness is increased and the Contrast is decreased by a similar amount.

Overscan Shift

Note: This feature is available on the following TV encoders — Conexant 871, 872, 873, 874, 875, and integrated encoders.

Depending on the TV encoder on the NVIDIA GPU or NVIDIA GPU-based graphics card, for some HDTV output modes, there is no available downscaler to implement overscan compensation. The Overscan shift slider option is available for this condition.

Using the Overscan shift slider, you can shift the desktop by 0% to 20% (based on the position of this slider) in response to the movement of your mouse.

For example, if you start moving the mouse cursor near the Windows taskbar Start button, the desktop will shift up and right so that the Start button becomes visible. Also, if you see a black border on your TV screen, you can use the slider to enlarge the TV screen to remove the border.
Chapter 6
Configuring Displays

Video Border — (for HDTV)

If you are using an HDTV, most HDTV displays, such as plasmas, suffer from burn-in related artifacts which can be distracting. Selecting the Video border check box (Figure 6.6) applies grey borders to the unused portion of your display to reduce this effect.

Figure 6.6 HDTV Output Setting — Video Border

Select the Video border check box if you see dark or black borders on any unused portion of your display.
Supported TV and HDTV Adjustment Features Based on TV Encoder and NVIDIA GPU

Table 6.1 lists TV encoders and the TV adjustment features they support.

<table>
<thead>
<tr>
<th>TV Encoders</th>
<th>Supported TV Adjustment Features</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Brightness</td>
</tr>
<tr>
<td>Integrated 1</td>
<td>✔</td>
</tr>
<tr>
<td>Chrontel 1</td>
<td>✔</td>
</tr>
<tr>
<td>Philips 1, 2</td>
<td>✔</td>
</tr>
<tr>
<td>Conexant 1, 2</td>
<td>✔</td>
</tr>
</tbody>
</table>

1. This category of TV encoders is supported, *at minimum*, by a GeForce MX or newer NVIDIA GPU family.
2. This category of TV encoder supports NVIDIA GPU series that are older than those listed in the previous footnote 1.
3. When using Release 50 or later version of the NVIDIA GPU series that are, *at minimum*, based on the NVIDIA GeForce4 MX 420 through GeForce4 MX 460 class, independent of the TV encoder family: Also, note that any TV encoder that supports both Contrast and Brightness features automatically supports the Overdrive feature.
4. Conexant 875 and Philips 7108 TV encoders support HDTV.
Chapter 7
Configuring HDTV

CHAPTER

CONFIGURING HDTV

This chapter explains how to initialize and configure your HDTV display under single-display and multiple-display nView Dualview and Clone configurations. The following major topics are discussed:

- “HDTV Supported Outputs” on page 105
- “Optimizing HDTV Viewing” on page 105
- “Supported TV/HDTV Formats” on page 107
- “Notes on Startup Functionality with HDTV Connected” on page 109
- “Using HDTV in nView Display Modes” on page 109
- “Using HDTV Formats with HDTV Component Connection” on page 111
- “Enabling HDTV-Over-DVI — Only for HDTVs Connected with DVI Cable” on page 118
- “Troubleshooting HDTV Configuration” on page 127

Note: Also see Appendix B: “Using HDTV with NVIDIA GPU-Based Graphics Cards” on page 199 if you are using the GeForce 6 or later series of NVIDIA graphics cards with your HDTV for helpful hardware information.
HDTV Supported Outputs

The ForceWare Release 70 graphics driver supports outputting SDTV, EDTV, HDTV formats over both analog and digital outputs:

- **Analog Component Out Y Pr Pb** on HDTV-encoded GPUs with a compatible connector*. You can select the format for your television (480i, 480p, 720p, or 1080i) and output in exceptional clarity.

- **Digital output** (see “Enabling HDTV-Over-DVI — Only for HDTVs Connected with DVI Cable” on page 118) on HDTV-encoded GPUs with a compatible connector*. You can select the format for your television (480i, 480p, 720p, or 1080i) and output in exceptional clarity.

 *Supported on NVIDIA GPU-based graphics cards with Conexant 875 or Philips 7108 TV encoders and compatible connectors and supported on the NVIDIA GPU internal encoder for the newer GPUs.

Optimizing HDTV Viewing

NVIDIA also offers correction modes to solve the problem of the Windows desktop overscanned and cutting off the Windows taskbar Start button. Therefore, NVIDIA provides HDTV overscan and underscan configuration options to optimize desktop viewing under HDTV formats.

- The “Shift threshold” setting (Figure 7.4) enables you to pan the desktop, when needed, to access any display elements that appear off-screen. See “Shift Threshold” on page 107 and “Using “Shift Threshold”” on page 114.

- The “Underscan” setting (Figure 7.6) lets you fit or center the display on the screen. See “Underscan” on page 106 and “Using Underscan” on page 116 for details.
Chapter 7
Configuring HDTV

Table 7.1 Optimizing HDTV Viewing

<table>
<thead>
<tr>
<th>User task</th>
<th>Recommended Corrective Method</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Watch movies</td>
<td>Native</td>
<td>Underscan correction always reduces the quality of the video being watched since it changes the size of the native video resolution by compressing the size of the pixels. In addition, sometimes there is additional electronic information recorded in the invisible portions of the video stream. This is not supposed to be seen directly by the user, as it can be very distracting. Underscan or overscan shift would cause this information to now become visible.</td>
</tr>
</tbody>
</table>
| • Browse the Web
 • Run Windows applications | Overscan shift | Browsing the web requires that the end user see all information in the browser window. Either of these modes will allow the users accomplish this and provide the best web viewing experience. |
| Play full-screen games | Underscan | If the application correctly queries the graphics driver and requests the modes it supports, you will be able to play the game in the corrected underscan mode and see all of the information on your display. However, some games do not query the graphics driver. Instead, these games hard code the resolutions supported in the game directly into their code. Therefore you can use an alternative way to correct the resolution, such as checking the display for correction options. |

Underscan

The **Underscan** feature works by centering a lower resolution on the HDTV screen. For component out, NVIDIA determined through market research that 15% overscan is common with many TVs (both SDTV and HDTV). NVIDIA used this information to create two custom resolutions that are optimal for Web browsing, running applications, and playing games on HDTV sets. These resolutions are:

- **720p**: 1088 x 612 (85% of the full 1280x720.)
- **1080i**: 1600 x 900 (1632 x 918 is 85% of the full 1920x1080, but that is so close to 1600x900 that 1600 x 900 is used instead.)

“Using Underscan” on page 116 explains how to use the **underscan** setting.
Chapter 7
Configuring HDTV

Shift Threshold

The Shift threshold feature works by tracking the position of the mouse cursor and slightly shifting the display when the cursor starts to become close to an edge of the desktop. This mode looks just like “native” HDTV formats (720p, 1080i) because it runs at the full HDTV resolution, which causes certain elements of the desktop, such as the Start button and the clock on the Windows taskbar, to not be visible at all times. But as the mouse cursor gets close to these desktop elements, the NVIDIA driver intelligently shifts the desktop a little in order to move those elements into view.

“Using “Shift Threshold”” on page 114 explains how to use the Shift threshold setting.

Native

The third technique, native mode, has where no overscan compensation done in order to give the user a true cinematic experience. This is useful when you do not want any pixel compression (squishing) and do not want to use the mouse to shift the desktop image.

Supported TV/HDTV Formats

Based on the encoder support, EDID or custom modes, NVIDIA graphics cards support the following TV formats:

- NTSC (US and Japanese)
- PAL (including all variations)
- SDTV 480i (525i); 576i (625i)
- EDTV 480p (525p); 576p (625p)
- HDTV 1080i and 720p.
Table 7.2 Supported TV/ HDTV Formats

<table>
<thead>
<tr>
<th>Connector Used</th>
<th>NTSC – US and Japanese</th>
<th>PAL – all variations</th>
<th>SDTV – 480i (525i), 576i (625i)</th>
<th>EDTV – 480p (525p), 576p (625p)</th>
<th>HDTV – 1080i, 720p</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-Video or Composite</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Component</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-connector</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Note: Formats are restricted based on the selected D mode.

DVI — Only formats associated with the EDID or custom 861B modes are available, once they are added on the Advanced Timing page. See “Enabling HDTV-Over-DVI — Only for HDTVs Connected with DVI Cable” on page 118.

About D Connector Output Modes

D connector output modes support a set of HDTV formats per D mode: D1, D2, D3 and D4. The D Connector modes and its associated formats are explained in Table 7.3.

Table 7.3 D Connector Output Modes

<table>
<thead>
<tr>
<th>Display</th>
<th>Format of the video signal to be transmitted</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>525i</td>
</tr>
<tr>
<td>D2</td>
<td>525i, 525p</td>
</tr>
<tr>
<td>D3</td>
<td>525i, 525p, 1125i</td>
</tr>
<tr>
<td>D4</td>
<td>525i, 525p, 1125i, 750p'</td>
</tr>
<tr>
<td>D5</td>
<td>525i, 525p, 1125i, 750p, 1125p</td>
</tr>
</tbody>
</table>

TV/HDTV Formats and Desktop Resolutions

The number of the active lines displayed for an HDTV format determine the associated native desktop mode or resolution:

- **NTSC 525 lines** - resolution of 720 x 480
- **PAL 625 lines** - resolution of 720 x 576
- **480i/480p** - resolution of 720 x 480
- **576i/p** – resolution of 720 x 576
- **720p** – resolution of 1280 x 720
- **1080i** – resolution of 1920 x 1080
If the selected resolution lines are smaller than the selected HDTV format, then black borders will be visible, but if the selected resolution lines are more than the selected HDTV format, the desktop should start panning.

If you use plasma displays with burn-in display issues, you can use the Video border option on the TV Output page to display grey instead of black for the borders when the selected resolution is smaller than the selected native HDTV format. See “Device Adjustments — TV Output” on page 99.

Notes on Startup Functionality with HDTV Connected

nView Single Display Mode

When you first start your computer, the HDTV display may have color distortion and may not fill the entire screen display. This is because when you first start your computer with a newly-installed driver, the TV signal format defaults to NTSC.

nView Multi-Display Mode

When two displays are connected to your computer, you will notice both displays are mirrored or “cloned” — this is nView Clone mode.

As with first-time startup on a single-display setup, in a multi-display setup you will also notice that the HDTV screen will have color distortion and may not fill the entire screen display area. Again, as in a single-display setup, this is because when you first start your computer with a newly-installed driver, the TV signal format defaults to NTSC.

Using HDTV in nView Display Modes

Note: HDTV use is not supported in nView Span mode.

For step by step instruction including screen shots, see “Using HDTV Formats with HDTV Component Connection” on page 111 and “Enabling HDTV-Over-DVI — Only for HDTVs Connected with DVI Cable” on page 118.
Chapter 7
Configuring HDTV

Using HDTV in nView Single Display Mode

Based on the connector (“HDTV Supported Outputs” on page 105) in use, all the associated HDTV formats (“Supported TV/HDTV Formats” on page 107) will be available in the nView Display Settings context menu available from the TV display icons as well as from the TV Settings screen. Screen resolutions and HDTV formats (“TV/HDTV Formats and Desktop Resolutions” on page 108) can be independently selected and set.

Using HDTV as the Primary Display in nView Clone Mode

Based on the connector (“HDTV Supported Outputs” on page 105) in use, all the associated HDTV formats (“Supported TV/HDTV Formats” on page 107) will be available in the nView Display Settings context menu available from the TV display icons as well as from the TV Settings screen.

Screen resolutions and HDTV formats (“TV/HDTV Formats and Desktop Resolutions” on page 108) can be independently selected and set similar to the single display mode.

The secondary display (such as an analog or digital display) will start panning if the selected primary HDTV resolution is greater than the maximum EDID mode of the secondary or if the selected physical secondary resolution is less than primary HDTV resolution.

If the selected primary HDTV resolution is smaller than the secondary display, the resolution will be scaled up if the secondary display is an analog display or, if it is a digital display, the desktop can have a black border.

If you use plasma displays with burn-in display issues, you can use the Video border option on the TV Output page to display grey instead of black for the borders when the selected resolution is smaller than the selected native HDTV format. See “Device Adjustments — TV Output” on page 99.
Using HDTV as the Secondary Display in nView Clone Mode

If HDTV is secondary all of the formats that the TV natively supports or in single display are available.

If the primary resolution is smaller than the HDTV, then the HDTV needs to upscale it to fit the current format or black borders will appear around the desktop. To reduce the brightness of the border, you can use the Video border option on the TV Output page; see “Device Adjustments — TV Output” on page 99.

If the primary resolution is greater than the HDTV format, then HDTV will pan on the secondary display. Any format change on the secondary HDTV display causes the physical mode to change, based on the associated resolution for the selected format. See “TV/HDTV Formats and Desktop Resolutions” on page 108.

Using HDTV in nView Dualview Mode

As with nView Single Display mode, based on the connector (“HDTV Supported Outputs” on page 105) in use, all the associated HDTV formats (“Supported TV/HDTV Formats” on page 107) will be available in the nView Display Settings context menu available from the TV display icons as well as from the TV Settings screen.

Using HDTV Formats with HDTV Component Connection

Note: The following procedure can be used for nView Single display, Clone, or Dualview mode.

1 After installing the NVIDIA Release 70 graphics driver right click on your Windows desktop.

2 If you have an HDTV connected in nView single display mode, then select the TV option. If you have dual displays connected, then select the NVIDIA Display option and then select the TV display option. The NVIDIA display control panel appears.

3 Select nView Display Settings from the NVIDIA display menu to display the associated page.

Either a single or two display icons appear.
If you are in single display mode but have multiple displays connection, you can click the nView display settings list and select either Dualview or Clone mode.

4 Right click on the HDTV display icon to view the available HDTV formats and select the Select TV format option to quickly see the TV/HDTV formats (Figure 7.1).

5 You can choose to select an HDTV format quickly from this list (as shown in the above example Figure 7.1) or click the Advanced button at the bottom of the context menu to open the TV Settings dialog box (Figure 7.2) where you select an HDTV format from the list in the Signal format section.

Figure 7.1 Quick Access to TV and HDTV Formats — nView Clone Mode Example.
Figure 7.2 HDTV Overscan Configuration — HDTV Component Connection

- If you have selected an HDTV (SDTV or EDTV) format that requires you to adjust your HDTV overscan configuration for optimal viewing of your desktop on your TV screen, then the HDTV Overscan Configuration dialog box (Figure 7.3) appears.

- You can also click the HDTV Desktop button on the TV Settings page to access this HDTV Overscan Configuration dialog box to make any future overscan/underscan adjustments to your desktop.

6 Click the Device Adjustments button to adjust the display settings of your HDTV. For details, see “Device Adjustments — TV Output” on page 99.
Chapter 7
Configuring HDTV

Figure 7.3 HDTV Overscan Configuration —“Native” Selected

Using “Shift Threshold”

As explained in “Shift Threshold” on page 107, use this option when your desktop appears larger than your HDTV screen so that part of your Windows taskbar, such as the Start button or the clock are not visible. Shift threshold will enable you to “pan” your desktop by moving your mouse over the edges of your desktop so that the hidden areas become visible.

1 From the HDTV Overscan Configuration page, select the Use “Shift threshold”...option (Figure 7.4) and click OK.
Figure 7.4 HDTV Overscan Configuration — “Shift threshold” Selected

2 You will be prompted to confirm the mode was set properly by the messages in Figure 7.5.

Figure 7.5 Confirm Display Settings Prompts

3 If you need to make further adjustments, such as compensating for any dark borders that appear around your desktop image and so on, click the Device
Chapter 7
Configuring HDTV

Adjustments button to adjust the display settings of your HDTV. For details, see “Device Adjustments — TV Output” on page 99 “Device Adjustments — TV Output” on page 99.

Using Underscan

As explained in “Underscan” on page 106, use this option to reduce your desktop resolution so that the entire desktop is visible on your TV screen without having to pan.

1 From the HDTV Overscan Configuration page, select the Underscan option (Figure 7.6) and click OK.

2 A message asks whether you want to fine tune your resolution (Figure 7.7).
Figure 7.7 Underscan Message Requesting Fine-Tuning of Screen Resolution

3 If you click Yes, the Screen Resolution page (Figure 7.8) appears where you can further adjust the resolution to suit your needs. When done click Apply and OK.

Figure 7.8 Adjusting Screen Resolution for Underscan Configuration

4 You will be prompted to confirm the mode was set properly by the messages in Figure 7.9.
Figure 7.9 Confirm Display Settings Prompts

5 If you need to make further adjustments, such as compensating for any dark borders that appear around your desktop image and so on, click the Device Adjustments button to adjust the display settings of your HDTV. For details, see “Device Adjustments — TV Output” on page 99 “Device Adjustments — TV Output” on page 99.

Enabling HDTV-Over-DVI — Only for HDTVs Connected with DVI Cable

This section explains how to use the NVIDIA control panel-based HDTV options to optimize your HDTV display.

Note: Read this section only if you have an HDTV connected to your computer with a DVI connector (Figure 7.10). For details on cable connectors, see “Using HDTV with NVIDIA GPÜ-Based Graphics Cards” on page 199.

Figure 7.10 Back View of HDTV with DVI Connector
Adding HDTV Formats

To add an HDTV format, follow these steps:

1. Connect your HDTV or digital display to the DVI port on your computer.

2. Install the current Release 70 graphics display driver software and restart your computer.

3. Open the nView Display Settings page on your NVIDIA display control panel.

4. Right click the display image that represents your HDTV to display the context menu, as shown in Figure 7.11.

 Note: If you have a newer HDTV model, the menu option Treat Digital Display as HDTV appears. Continue to step 5.

 Note: If you have an older HDTV model, you may not see the menu option Treat Digital Display as HDTV. In this case, follow the steps in the next section “Adding HDTV Formats — For Older HDTV Models” on page 122.

5. If the menu option Treat Digital Display as HDTV already appears selected (i.e., it has a check mark next to it) then select Select TV format, as shown in Figure 7.12. Notice that HDTV formats now appear in the menu.

6. If the menu option Treat Digital Display as HDTV is not selected (checked), then select it and click Apply. Then right click the display image that represents your HDTV to display the context menu and select Select TV format, as shown in Figure 7.12. Notice that HDTV formats now appear in the menu.

 For details on how to configure this list of HDTV formats to be “standard” or non-standard, see “Using the “Show standard HDTV formats“ Option” on page 123.

7. Select the HDTV format you want.

8. To configure the HDTV Overscan Configuration page, click Advanced and then refer to the procedures in “Using HDTV Formats with HDTV Component Connection” on page 111 for details on using the HDTV Overscan Configuration page.
Chapter 7
Configuring HDTV

Figure 7.11 HDTV over DVI — Selecting the "Treat Digital Display as HDTV" Option.

Select Treat Digital Display as HDTV and click Apply to enable the HDTV formats shown in the next figure (Figure 7.12).
Chapter 7
Configuring HDTV

Figure 7.12 Selecting Standard and Non-Standard HDTV Formats (HDTV-over-DVI).

Note: You can specify whether this list contains all of "Standard HDTV formats" or a customized shorter list of formats.
Chapter 7
Configuring HDTV

Adding HDTV Formats — For Older HDTV Models

If you cannot see the menu option Treat Digital Display as HDTV on the context menu of your HDTV display image (refer to the second Note: of step 4, in the previous section), follow these steps:

1 Right click the display image that represents your HDTV to open the context menu and then select Change Resolution to open the Screen Resolutions & Refresh Rates page (Figure 7.13).

2 Select the Show standard HDTV formats check box (Figure 7.13) to display and quickly access the list of standard HDTV formats from your nView Display Settings page.

For details on the meaning of “standard” vs. non-standard HDTV formats, see “Using the “Show standard HDTV formats” Option” on page 123.

3 Click Apply.

4 Exit the NVIDIA display control panel.
5 Open the NVIDIA display Control panel and open the nView Display Settings page.

6 Right click the display image that represents your HDTV to display the context menu, as shown in Figure 7.11. The menu option Treat Digital Display as HDTV appears.

7 Select Treat Digital Display as HDTV and click Apply. This will insert a check mark next to that menu option, as shown in Figure 7.11.

8 Again, right click the display image that represents your HDTV to open the context menu and select Select TV format. Notice that HDTV formats now appear in the menu, as shown in as shown in Figure 7.12.

Note: For details on how to configure this list of HDTV formats to be “standard” or non-standard, see “Using the “Show standard HDTV formats” Option” on page 123.

9 Select the HDTV format you want.

10 To configure the HDTV Overscan Configuration page, click Advanced and then refer to the procedures in “Using HDTV Formats with HDTV Component Connection” on page 111 for details on using the HDTV Overscan Configuration page.

Using the “Show standard HDTV formats” Option

To modify the list of HDTV formats that you want to access from the nView Display Settings page (Figure 7.12), you can select or clear the Show standard HDTV formats check box on the Screen Resolutions and Refresh Rates page.

Follow these steps to access the Show standard HDTV formats check box.

1 From the nView Display Settings page, right click the display image that represents your HDTV to display the context menu and click Change Resolution. The Screen Resolutions and Refresh Rates page appears. In most default states, this check box is selected (checked), as shown in Figure 7.13.

2 Depending on the type of HDTV formats you want to access on the nView Settings page (Figure 7.12), you can select or clear the Show standard HDTV formats check box, as explained in the sections that follow.
Chapter 7
Configuring HDTV

“Show standard HDTV formats” Option — Cleared

If you clear the Show standard HDTV formats check box, the message in Figure 7.14 appears as a warning.

Figure 7.14 HDTV Overscan Configuration Message.

![HDTV Overscan Configuration Message](image)

Note: This message indicates that if you configured any custom settings using the Advanced Timing page (see “Advanced Timing” on page 174), clicking Yes on the message will remove these customized values.

When the Show standard HDTV formats check box is cleared, the nView Display Settings page gives you access to only those HDTV formats that are natively supported by your HDTV display, as exposed by your HDTV display EDID.

An example of this shorter list of HDTV formats is shown in Figure 7.15.

“Show standard HDTV formats” Option — Selected

When you select this Show standard HDTV formats check box, you can access the complete list of HDTV standard formats — including those that may not be natively supported by your HDTV display — from the nView Display Settings page.

An example of this shorter list of HDTV formats is shown in Figure 7.16.
Clearing the Show Standard HDTV formats check box gives you access to only those formats that are natively supported by your HDTV display.
Figure 7.16 HDTV Formats — “Show standard HDTV formats” Option SELECTED.

Selecting the Show standard HDTV formats check box gives you access to a longer list of HDTV formats, which can include those that are not natively supported by your HDTV display.

Standard HDTV formats:
Troubleshooting HDTV Configuration

Problem: For 480i/p, 640x480 is the native solution. Can NVIDIA support this resolution?

Answer: Actually, the native resolution for 480i and 480p is 720x480. NVIDIA does fully support 640x480 also. However, Windows XP hides that mode from the user. Note that this is a Windows XP feature and, therefore, cannot be changed by NVIDIA.

To access this resolution, follow these steps:

1. Right click on your Window desktop and select Properties from the desktop menu. The Windows Display Properties window appears.
2. Click the Settings tab.
3. Click the Advanced button.
4. Click the Adapter tab.
5. Click List All Modes and locate the resolution.

Problem: For 720p/1080i, we cannot find the resolution 1280x720 (720p) and 1920x1080 (1080i).

Answer: You are probably using nView Clone or an nView Span display mode where HDTV is the secondary display.

Note: When using nView Clone or an nView Span mode, the secondary display should not be set to a higher resolution than the primary. If, however, that is your current setting, you can solve the problem in one of three ways:

- Make the HDTV be the primary display.
- Assign a different display that can handle higher resolutions as the “primary”.
- Do not use the nView Clone or Span modes.
Problem 1: Screen is shrunk. The screen shrink should only be horizontal.

Answer: This is because 720p is 1280 pixels wide, but your desktop is only 1024 wide.

Problem 2: The horizontal edges of the screen are cut. For example, we only see half of the Windows taskbar.

Answer: This means that your HDTV has more than 18% overscan — therefore, some of the 768 lines are not visible. The solution is to use the **Shift threshold** slider on your HDTV display’s NVIDIA Device Adjustment page.

See relevant sections under “Optimizing HDTV Viewing” on page 105 for a description of this feature.

See “Using “Shift Threshold”” on page 114 for details on using this option.

Problem 1: The TV is set to full screen display. The Windows desktop display is panning.

Answer: You are not exactly seeing the “panning” feature — but rather the **Shift threshold** feature. See relevant sections under “Optimizing HDTV Viewing” on page 105 for a description of this feature.

Problem 2: The top and bottom edges of the desktop are cut. For example, we only see half of the Windows taskbar.

Answer: You need to increase the amount of “Shift threshold” by using the **Shift threshold** slider from the HDTV display’s NVIDIA Device Adjustment page. The amount required will vary, based on the type of HDTV you are using, and is not detectable.

See relevant sections under “Optimizing HDTV Viewing” on page 105 for a description of this feature.

See “Using “Shift Threshold”” on page 114 for details on using this option.
Chapter 8
Configuring Key ForceWare Graphics Driver Features

CHAPTER

CONFIGNRING KEY FORCEWARE GRAPHICS DRIVER FEATURES

This chapter explains how to configure key ForceWare graphics driver features:

• “Adjusting Desktop Colors” on page 130
• “Adjusting Performance and Quality Settings” on page 135
• “Using Video Overlay Settings” on page 153
• “Using Full Screen Video Settings” on page 155
• “Using the Tools Page” on page 160
• “Using NVRotate Settings” on page 166
• “Adjusting Temperature Settings” on page 169
• “Changing Screen Resolutions and Refresh Rates” on page 171
• “Editing the NVIDIA Display Menu” on page 179
• “Adjusting PowerMizer Settings — Only for Notebook Computers” on page 182
Adjusting Desktop Colors

Accessing the Desktop Colors Page

Note: In order to access the Color Correction page, the color setting on the Windows Display Properties Settings page must be set to 16 bit or higher. A setting of "256 colors" will not enable the Color Correction page.

Follow any one of these methods to access the Color Correction page (Figure 8.1).

- From the NVIDIA display menu, click Color Correction
- From the nView Display Settings page:
 1. Right-click one of the display images or click the Device Settings >> option.
 2. Select the Color Correction option.
- From the Video Overlay Settings or Full Screen Video page, click Adjust Color.

Figure 8.1 Color Correction Settings

Image Sharpening is available with GeForce FX and newer series of NVIDIA GPUs.
Color Correction Settings

Digital Vibrance

Note: The **Digital Vibrance Control (DVC)** feature supported by the GeForce2 MX and newer series of NVIDIA GPUs.

DVC, a mechanism for controlling color separation and intensity, boosts the color saturation of an image so that all images — including 2D, 3D, and video — appear brighter and crisper (even on flat panels) in your applications.

Digital Vibrance can be turned off or set to different levels from low to high as shown in Figure 8.1.

Brightness, Contrast, and Gamma

Note: The **Color profile** option on this page must be set to **Standard Mode** in order to use the **Brightness**, **Contrast**, and **Gamma** sliders.

To adjust the **Brightness**, **Contrast**, or **Gamma** values for the selected color channel, click and move the sliders until you see the desired adjustment.

Notice that the color curve graph changes as you adjust values using these sliders, which also reflects in the values of the **Input** and **Output** boxes displayed on the left of the Gamma slider.

Adjusting brightness, contrast, and gamma values helps you compensate for variations in luminance between a source image and its output on a display. This is useful when working with image processing applications to help provide more accurate color reproduction of images (such as photographs) when they are displayed on your screen.

Also, many 3D-accelerated games may appear too dark to play. Increasing the brightness and/or gamma value equally across all channels will make these games appear brighter, making them more playable.

For related information, see “**Color Channels**” on page 132 and “**Color Curve Graph**” on page 133.
Chapter 8
Configuring Key ForceWare Graphics Driver Features

Apply Color Changes to...

The Apply color changes to list appears at the top of the Color Correction page.

Click the list to display the settings below and then select a setting.

- **All** applies the color correction settings on this page to your Windows desktop and to video playback.
- **Desktop** applies the color correction settings to your Windows desktop.
- **Overlay/VMR** applies color correction settings on this page to video playback that uses overlay hardware.

 Note: Current generation hardware overlay does not support per-component (Red, Green, Blue) color correction, but instead exposes a single, unified color correction channel. Therefore, if you select this setting, only the **All Channels** setting in the color channels list is available. (See **Color Channels** in the next section.)

- **Full Screen Video** applies color correction settings on this page to any full screen video that is running on your display.

Color Channels

The color channels list appears directly above the color curve graph on the Color Correction page.

Click the color channel list to select a color channel.

You can adjust the **Red**, **Green**, and **Blue** channels by selecting each color separately or by selecting the composite choice **All channels**, which is the default setting.

Note: If you select the **Overlay/VMR** setting from the **Apply color changes to** list (see “Apply Color Changes to...” on page 132), only the **All Channels** setting is available.

When you select a color channel, notice that the following takes place:

- The color appears in the graph of the color correction curve below.
- Moving the **Brightness/Contrast/Gamma** sliders changes the appearance of the colored line/curves in the graph in real time.

For additional information on the graph of the color correction curve, see **Color Curve Graph** below.
Chapter 8
Configuring Key ForceWare Graphics Driver Features

Color Curve Graph

The graph below the color channels list represents the color correction curve. Input values are represented along the x-axis and shown numerically in the In(put) edit box. The adjusted output values are represented along the y-axis and the adjusted output values are shown numerically in the Out(put) edit box.

If the Color profile option is set to Standard Mode, this curve changes dynamically as you adjust the Contrast, Brightness, or Gamma values using the sliders.

If the Color profile option is set to Advanced Mode, you cannot use the Contrast, Brightness, or Gamma sliders but you can modify this curve in real-time by using any one of these methods:

• Click the curve to create a control point on it. Repeat the step to create additional points, as needed.
• Click the curve and drag the mouse to modify the curve, which also dynamically modifies the values in the Input and Output edit boxes.
• Enter a value that is less than or equal to 1 in the Input and/or Output edit boxes.
• Select one or more control points and then press the arrow keys on your keyboard to adjust the curve and numeric values in the Input/Output edit boxes.
• To insert several control points, click the curve to select a point and then press Ins (Ins key on your keyboard) one or more times, depending on the number of points you want to add, which is limited by any other points that may already exist on the curve.
• To remove a control point, select the point and drag it out of bounds or select the point and press Del.
• To select multiple control points, you can either press down the Ctrl key and select the points you want with your mouse, or left click and drag the mouse around the items to create a box that selects the items.

If you have loaded an ICC profile, the color correction curves loaded from the ICC profile are displayed in the graph. Use a professional publishing application to perform color matching based on information in the ICC profile.
Chapter 8
Configuring Key ForceWare Graphics Driver Features

Image Sharpening

Note: This option is only available on GeForce FX and later NVIDIA GPU-based graphics cards.

Use the Image Sharpening slider to adjust the sharpness of the image quality by amplifying high frequency content.

Color Profile

The Color Profile option displays a list of available color correction profiles.

- Specify **Standard Mode** if you want to adjust color correction settings using the Contrast, Brightness, and Gammas sliders.
- Use **Advanced Mode** if you want to adjust color correction settings by manually inserting, dragging, and removing control points along the curve shown in the graph. See “Color Curve Graph” on page 133.

Note: When this option is enabled, the Contrast, Brightness, or Gamma slider settings are not available.

- **Custom** settings you may have saved are also shown in this list. To activate a custom profile, select it from the list and click **Apply**.

Add (ICC Profile Mode)

1. Click **Add** to display a dialog box from which you can load an ICC profile that contains color correction curves.

2. Enter the file name of the ICC profile and click **OK** to load the file.

 The ICC profile just added now appears in the **Color profile** list.

 Note: Once you load this ICC profile, the Brightness, Gamma, and Contrast sliders are disabled.

Other Settings

- **Save as** lets you save the current color settings as a custom setting. Saved settings will then be added to the **Color Profile** list as a “custom” setting.
- **Delete** lets you delete the custom color setting currently selected in the list.
- **Restore Defaults** restores all color values to the hardware factory settings.
Adjusting Performance and Quality Settings

The following topics are discussed in this section:

• “Changing Global Driver Settings” on page 136
• “Modifying an Existing Application Profile” on page 137
• “Adding a New Application Profile” on page 142
• “Deleting Application Profiles” on page 144
• “Driver Settings” on page 144
• “Driver Settings — Advanced” on page 147

To access the Performance and Quality Settings page, from the NVIDIA display menu, click the Performance and Quality Settings option (Figure 8.2).

Figure 8.2 Performance and Quality Settings Page

Note: You can use the “Application profiles” and “Global driver settings” modules independently. For example, you can use the Global driver settings to modify...
your active desktop application without having to use any of the Application profiles features or settings.

- **Application profiles** refer to pre-defined saved files containing NVIDIA OpenGL and Direct3D driver settings for game-specific applications.

 Note: When you first open the Performance & Quality page, the lists in the Application profile section is set to the default “global driver settings” state as shown in the screen image above. You can click these lists to select applications and application profiles for which you want to modify the driver settings that appear in the global driver settings list.

- **Global Driver Settings**
 The list that appears in the Global driver settings section contain OpenGL and Direct3D based settings, which you can modify. For details, see “Driver Settings — Advanced” on page 147.
 - You can change driver settings for any applications that you are currently running.
 - You can also change driver settings for existing application profiles and new application profiles you are adding and then save these settings.

Changing Global Driver Settings

To change driver settings globally for any OpenGL-based or Direct3D-based application you are running, follow these steps:

1. Make sure the **Active profile** list is set to **Global driver settings**.
2. Click **Apply**.
3. From the Global driver settings list, click a setting that you want to change.
4. Notice that the setting is highlighted and its slider appears at the bottom of the page, as shown in the example in **Figure 8.3**.
5. Use the slider to modify the setting to suit your needs. Refer to the following sections for additional information:
 - “Changing Global Driver Settings” on page 136
 - “Modifying an Existing Application Profile” on page 137
6. Repeat steps 3 through 5 for each driver setting you want to change.
7. Be sure to click **Apply** after each change you make to the global driver settings.
Modifying an Existing Application Profile

To modify pre-defined NVIDIA-supplied application profiles, follow these steps:

1. Set the **Active profile** list to Global driver settings and click the **Restore** button to restore all settings to their default values.

2. Then, select an application profile by using any one of these methods:
 - Select the application profile directly from the **Active profile** list OR
 - Select the application from the **Application** list. Notice that an associated profile for the selected application appears in the Active profile list. If another profile is also associated with the application you selected, you can browse the list and select that profile instead.

The driver settings of the profile you just selected appear in the driver settings list. After you select a profile, this list, previously labeled “Global driver setting,” changes to “**Settings for <application profile name>**” as shown in **Figure 8.4**.
The check box next to the driver settings indicates whether the driver setting comes from driver or the selected profile.

- If the check box is selected (i.e., a check mark appears), the setting is part of the profile. If you clear a check box that has a check mark in it and click Apply, then the setting associated with the check box is cleared and removed from the profile.
- If the check box is empty, this means that the setting is controlled by the NVIDIA driver. If you select an empty check box (insert check mark) and click Apply, this means you are adding the setting to the profile.

3 From the driver settings list, click a setting that you want to change for the selected application profile. Notice that the setting is highlighted.

4 Select the check box for that setting and click Apply. Notice that its slider appears at the bottom of the page.
5 Use the slider to modify the setting to suit your needs. Refer to the following sections for additional information:
 - “Changing Global Driver Settings” on page 136
 - “Modifying an Existing Application Profile” on page 137

6 Repeat steps 2 through 5 for each driver setting you want to change.

7 Be sure to click **Apply** after each change you make to a driver setting.

8 Click the **Modify Profile** button.

 Two options — **Modify** and **Save As...** — appear (Figure 8.6).

 Figure 8.5 Changing Global Driver Settings

9 If you want to associate specific applications with the modified profile, click the **Modify** menu option and follow all the steps — a through g below.

 If you do not want to associate specific application executable files with the modified profile, simply click **Save As**... and then follow steps e. through f. below.

 a Click **Modify** to display the Modify Profile dialog box.
In the Associated application list, select one or more applications (check box) you want to associate with the profile you are modifying. If you want to locate and select applications not in the current list, click **Browse**.

Click **Modify** to display the Modify Profile dialog box.

In the Associated application list, select one or more applications (check box) you want to associate with the profile you are modifying. If you want to locate and select applications not in the current list, click **Browse**.

Click **OK** when done to return to the previous page and click **Apply** again.

To save the modified profile, click the **Modify** button and then click the **Save As** menu option to display the Save Settings dialog box.

From the **Save Settings** dialog box, you can either retain the existing name or rename the profile.

Figure 8.7 shows the profile name being retained. Figure 8.8 shows the profile being renamed.

Click **OK** to return to the previous page and, if the Apply button is enabled, click **Apply**.

Figure 8.6 Changing Global Driver Settings
If you used the existing profile name thus overwriting the profile with the new settings, as shown in Figure 8.7, notice that the Restore button appears (Figure 8.7) indicating that an original profile was changed. You can always restore these types of profiles to the original settings but cannot remove them from the list.

If you renamed the profile, as shown in Figure 8.8, then it is considered a “new” profile and the Remove button appears (Figure 8.8). You can always remove these types of profiles from the list.
Chapter 8
Configuring Key ForceWare Graphics Driver Features

Figure 8.8 Modifying a Profile — Renaming and Saving the Profile

Adding a New Application Profile

You can add new application profiles, which you can also delete. To add a new application profile, follow these steps:

1. Set the Active profile list to Global driver settings.
2. Click Apply.
3. Click Add to display the Add Profiles dialog box.
Chapter 8
Configuring Key ForceWare Graphics Driver Features

4 In the Associated application list, select the check box associated with one or more of the applications you want to associate with the profile you are adding. If you want to locate applications not in the current list, click the Browse button.

5 Enter a name for the profile you are adding in the Profile text entry box, as shown in the left image in Figure 8.9.

Figure 8.9 Adding a Profile

6 Click OK to return to the previous page. The Application profiles list displays the new profile name, as shown in the image on the right in Figure 8.9.

7 For each driver setting you want to change for this new profile, follow these steps:
 a Select the check box of the driver setting you want to change and save as part of the new profile.
 b Click Apply.
 c Clear the Application controlled check box and click Apply.
 d Use the slider to set the value you want and click Apply.

 For additional information, see “Driver Settings” on page 144 and “Driver Settings — Advanced” on page 147.
Chapter 8
Configuring Key ForceWare Graphics Driver Features

- Repeat steps a. through d. for each driver setting you want to change.
- Click Apply.

Deleting Application Profiles

You can remove the following types of profiles — i.e., the Remove button is available for use when:

- You have selected a profile you have added.
- You have selected a pre-defined NVIDIA-supplied profile that you have modified and renamed.

Note: Remember that when you delete a profile that is associated with a single application or multiple applications, all NVIDIA settings for that one or multiple applications as you’ve set in that profile are remove.

If you have created another profile that contains any of these same applications, you may want to use that profile.

Driver Settings

Antialiasing Settings

Antialiasing is a technique used to minimize the “stairstep” effect sometimes seen along the edges of 3D objects. Your selection can range from turning antialiasing completely off to selecting the maximum amount possible for a particular application. Use this slider to set the degree of antialiasing to be used in Direct3D and OpenGL applications.

Tips on setting antialiasing modes — Some antialiasing settings require a large amount of video memory. If the mode you requested requires more video memory than available and you see unexpected results, try selecting the next lower mode, and so on, until you achieve the desired result. You may also want to experiment with different screen resolutions, refresh rates, and/or color depths until you arrive at a setting or combination of settings for antialiasing to work.

- Application-controlled. To configure options with the slider, you must clear this check box and click Apply. If you select this check box, the configurable options are automatically disabled because your application determines the antialiasing settings. To configure options with the slider, you must clear this check box and click Apply.
Chapter 8
Configuring Key ForceWare Graphics Driver Features

Figure 8.10 NVIDIA Driver Settings (Standard)

- **Off** disables antialiasing in 3D applications. Select this option if you require maximum performance in your applications.
- **2x** enables antialiasing using the 2x mode. This mode offers improved image quality and high performance in 3D applications.
- **4x** enables antialiasing using the 4x mode. This mode offers better image quality but can slightly reduce performance in 3D applications.
- **6xS** affects only Direct3D applications and enables antialiasing using the 6xS mode. This mode offers better image quality than the 4xS mode.
- **8x** enables antialiasing using the 8x mode. This mode offers better image quality than the 6xS mode for Direct3D applications and better image quality that the 4x mode for OpenGL applications.
- **16x** enables antialiasing using the 16x mode. This mode offers better image quality than the 8x mode.
Anisotropic Filtering

Anisotropic filtering is a technique used to improve the quality of textures applied to the surfaces of 3D objects when drawn at a sharp angle. Use the Anisotropic filtering slider to set the degree of anisotropic filtering for improved image quality. Enabling this option improves image quality at the expense of some performance.

- Application-controlled. If you select this check box, the configurable options are automatically disabled because your application determines the anisotropic filtering settings. To configure options with the slider, you must clear this check box and click Apply.
- Off disables anisotropic filtering.
- 1x results in maximum application performance.
- 2x through 8x results in improved image quality but at some expense to application performance. Higher values yield better image quality while reducing performance.

Image Settings

Image Settings allow to have full control over the image quality in your applications. The Image Settings slider contains the following settings: High Performance, Performance, Quality, and High Quality.

- High performance offers the highest frame rate possible resulting in the best performance for your applications.
- Performance offers an optimal blend of image quality and performance. The result is optimal performance and good image quality for your applications.
- Quality is the default setting that results in optimal image quality for your applications.
- High Quality results in the best image quality for your applications. This setting is not necessary for average users who run game applications. It is designed for more advanced users to generate images that do not take advantage of the programming capability of the texture filtering hardware.

Note: This High Quality setting is not necessary for average users who run game applications. It is designed for more advanced users to generate images that do not take advantage of the programming capability of the texture filtering hardware.
Table 8.1 contains a summary of all the Image Settings and the optimizations they enable. For further details, also see “Anisotropic Optimizations” on page 152 and “Trilinear Optimization” on page 151.

Table 8.1 Image Settings and Optimizations

<table>
<thead>
<tr>
<th>Optimization</th>
<th>Image Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>High Quality</td>
</tr>
<tr>
<td>Trilinear Optimizations ** enabled</td>
<td>N/A (full trilinear)</td>
</tr>
<tr>
<td>Trilinear Optimizations disabled</td>
<td>N/A (full trilinear)</td>
</tr>
<tr>
<td>Anisotropic Optimizations** enabled</td>
<td>N/A (forced off)</td>
</tr>
<tr>
<td>Bilinear other textures</td>
<td>Bilinear all textures</td>
</tr>
<tr>
<td>Anisotropic Optimization disabled</td>
<td>N/A (forced off)</td>
</tr>
</tbody>
</table>

* Trilinear functionality is subject to Trilinear optimization control.

** Anisotropic optimization only affects Direct3D applications.

Vertical Sync

Vertical Sync settings specify how vertical synchronization is handled in OpenGL applications.

- Off keeps vertical synchronization disabled unless an application specifically requests otherwise.
- On keeps vertical synchronization enabled unless an application specifically requests otherwise.

Driver Settings — Advanced

View Advanced Settings

When you select View advanced settings from the View list, additional advanced settings appear in the Global driver settings list. These settings, intended for advanced users, are shown in Figure 8.11 through Figure 8.13 and explained in this section.

Note: Availability of the advanced settings described below may depend on the type of NVIDIA GPU that your graphics card is using and/or the type of graphics
Chapter 8
Configuring Key ForceWare Graphics Driver Features

card you are using.

Figure 8.11 NVIDIA Driver Settings (Advanced)

![NVIDIA Advanced Driver Settings](image)

Color Profile

Use the **Color profile** setting to associate a color profile with the selected application profile.

1. Make sure you have created and saved at least one custom color profile from the Color Correction page. For details, see “Color Profile” on page 134 and “Other Settings” on page 134.

2. On the Performance & Quality page, select **View advanced settings** from the View list and click **Apply**.

3. Select **Color profile** from the driver settings list (Figure 8.11).

4. If you completed step 1, you will see the **Color profile** list box at the bottom of the page (Figure 8.11).
Chapter 8
Configuring Key ForceWare Graphics Driver Features

5 Click the list and select a color profile, then click **Apply**.

Force Mipmaps

Enabling this option enables mipmaps on applications that do not support mipmaps.

1 Make sure the **View advanced settings** option is selected from the View list.

2 Select **Force mipmaps** from the driver settings list.

3 Use the slider to set one of these values:
 - **None** means do not force mipmaps on application that do not support mipmaps.
 - **Bilinear** results in better image quality with better performance.
 - **Trilinear** results in good image quality with lower performance.

Conformant Texture Clamp

“Texture clamping” refers to how texture coordinates are handled when they fall outside the body of the texture. Texture coordinates can be clamped to the edge or within the image.

1 Make sure the **View advanced settings** option is selected from the View list.

2 Select **Conformant texture clamp** from the driver settings list.
 The available slider settings are **On** and **Off**.

Extension Limit

Note: You cannot change this setting.

By default, the driver extension string has been trimmed for compatibility with the application.

Hardware Acceleration

Hardware acceleration settings determine advanced rendering options when using multiple displays and/or graphics cards based on different classes of NVIDIA GPUs.

1 Make sure the **View advanced settings** option is selected from the View list.
2 Select **Hardware acceleration** from the driver settings list.

The available slider settings are shown in Figure 8.12 and explained.

Note: Multi-display hardware acceleration options do not apply when using nView Multiview mode in Windows NT 4.0.

- **Single-display mode**: If you have only one active display, this is the default setting. You can also specify this setting if you have problems with the multi-device modes.

- **nView Clone/Span mode** is the default setting when your nView display mode is set to nView Clone mode or one of the nView Span modes. If multiple NVIDIA-GPU based graphics cards in your system are in use with active displays, this setting is replaced by one of the “multi-display” modes described below.

Figure 8.12 Hardware Acceleration Driver Setting

- **Multi-display compatibility mode** is available if you have two or more active displays when running in nView Dualview display mode or if you are using different classes of NVIDIA GPU-based cards.

Note: When this mode is in effect, OpenGL renders in “compatibility” mode for all displays. In this mode, when different classes of GPUs are in use, the lowest common feature set of all active GPUs is exposed to OpenGL applications. The OpenGL rendering performance is slightly slower than in single-display mode.
Multi-display performance mode is available if you have two or more active displays when running in nView Dualview mode or if you are using different classes of NVIDIA GPU-based cards.

Note: When this mode is in effect, OpenGL renders in “performance” mode for all displays. As in “compatibility” mode, when different classes of GPUs are in use, the lowest common feature set of all active GPUs is exposed to OpenGL applications. However, the rendering performance is “faster” than in compatibility mode, although switching or spanning displays may result in minor transient rendering artifacts.

Trilinear Optimization

This option enable you to have full control over trilinear optimizations in Direct3D and OpenGL applications.

Figure 8.13 Driver Settings Displaying Trilinear & Anisotropic Optimizations

1. Make sure the **View advanced settings** option is selected from the View list.

2. Select **Trilinear optimization** from the driver settings list. The available slider settings are **On** and **Off** as shown in Figure 8.13.
 - **On** allows better texture filtering performance with no perceived loss of image quality. You can view the areas of the image that are affected by the trilinear optimization by enabling textures that contain colored mipmap chains that are
used in typical diagnostic applications. Also see Table 8.1, “Image Settings and Optimizations” on page 147.

- **Off** disables trilinear optimizations and will result in the best image quality.

Anisotropic Optimizations

Note: In the current Release 70 driver, you have full control over anisotropic optimizations in Direct3D applications. However, note that *anisotropic optimizations are not implemented for OpenGL applications*. Therefore, if you have set Anisotropic Optimization to **On**, the resulting effect will be **Off** when running OpenGL applications.

Anisotropic Mip Filter Optimization

This option enables the NVIDIA display driver to substitute point-mipmap filtering for linear-mipmap filtering on all but the primary texture stage.

1. Make sure the **View advanced settings** option is selected from the View list.
2. Select **Anisotropic mip filter optimization** from the Global driver settings list. The available slider settings are **On** and **Off**.
 - **On** forces the use of point-mipmap filtering on all but the primary texture stage. This improves performance but at some cost to image quality.
 - **Off** disables anisotropic mip filter optimization for best image quality.

Anisotropic Sample Optimization

This option enables a variety of sample-related optimizations on all but the primary texture stage, thus improving performance but with a small impact on image quality.

1. Make sure the **View advanced settings** option is selected from the View list.
2. Select **Anisotropic sample optimization** from the Global driver settings list. The available slider settings are **On** and **Off**.
 - **On** enables the use of anisotropic sample optimization for better performance.
 - **Off** disables the use of anisotropic sample optimization for best image quality.
Negative LOD bias

To access the **Negative LOD bias** option, make sure the **View advanced settings** option is selected from the View list.

Applications sometimes use negative LOD bias to sharpen texture filtering, which sharpens the stationary image but introduces aliasing when the scene is in motion.

Anisotropic filtering provides texture sharpening without unwanted aliasing, so it is desirable to clamp LOD bias (move the **Negative LOD bias status** slider to the **Clamp** setting) when anisotropic filtering is enabled for better image quality.

Otherwise, the default setting is **Allow**.

Using Video Overlay Settings

Use the Video Overlay settings to adjust the quality of video or DVD playback on your display.

Note that these settings affect videos that are created using the hardware overlay, but have no effect on videos created using software overlays, or a “blit” process such as VMR.

Note: If any settings changes you make have no effect on the video overlay after you click **Apply**, close the video overlay and then re-open it.

Accessing the Video Overlay Settings Page

1. First, open the DVD or video application that you want to view.

2. Click **Video Overlay Settings** from the NVIDIA display menu to open the associated page (Figure 8.14).

 If you need help in accessing the NVIDIA display menu, see “Accessing the NVIDIA Display Control Panel Pages” on page 52.

 Figure 8.14 shows a Video Overlay Settings page for Windows XP/2000.
Figure 8.14 Video Overlay Settings — Windows XP/2000

Overlay Zoom Controls

Zoom Control

Zoom control lets you zoom into the rendered video. Use the drop-down menu to select the display type to zoom and use the quadrant selection to select the screen region to zoom.

- **Video Overlay** sets the zoom selection to the display on which the overlay video is rendered.
- **Both** applies the zoom selection to both the device on which the overlay video is rendered and the full screen display you selected for the video mirror feature (see “Using Full Screen Video Settings” on page 155).

Note: Video players that cannot detect the presence of Video Mirror may not update the zoom factor immediately while displaying a still frame.
Out/In

The Out/In slider lets you zoom in on or out of the selected portion of the video playback screen.

Screen Region to Zoom

Select the area of the video screen on which you would like to zoom by clicking the area. You can then zoom to that portion of the screen by moving the Out/In slider control, below.

Overlay Color Controls

Hue and Saturation

You can independently control the hue and saturation to achieve optimal image quality when playing back videos or DVD movies on your computer.

Adjust Colors

See “Adjusting Desktop Colors” on page 130.

Restore Defaults

Click Restore Defaults to restore all color values to the hardware factory settings.

Using Full Screen Video Settings

Note: If you have only one display connected to your computer and active, you will not see the Full Screen Video menu option on the NVIDIA display menu. However, you will have access to the Video Overlay Settings menu option.

Note: You can now use the NVIDIA display selection shortcut feature to play video files on any selected display. For details, see “Shortcut to Playing Video Files on Any Display” on page 54.

Use the Full Screen Video settings page (Figure 8.15) to adjust the quality of video or DVD playback on your display(s). Note that the settings on the Full Screen Video
Chapter 8
Configuring Key ForceWare Graphics Driver Features

page affect videos that are created using the hardware overlay. These settings have no effect on videos created using software overlays, or a “blit” process such as VMR.

Note: If any settings changes you make do not take effect (e.g., the controls have no effect on the video) after you click Apply, close the video overlay application and then re-open it.

Figure 8.15 Full Screen Video Settings — Disabled

About the Full Screen Video Mirror Feature

The full screen “video mirror” feature allows a video or DVD application to mirror its playback in full-screen mode on any one of the connected displays.

Note: The full screen “video mirror” feature is
- Not available under Windows NT 4.0.
- Supported by any NVIDIA GPU-based multi-display graphics card.
Chapter 8
Configuring Key ForceWare Graphics Driver Features

Accessing the Full Screen Video Page

1. First, make sure you have at least two displays connected to your computer. If you have only one display connected, you will not see the Full Screen Video menu option on the NVIDIA display menu.

2. On the nView Display Settings page, set nView mode to a multi-display mode, such as Clone or Dualview.

3. Open the DVD or video application and click Full Screen Video from the NVIDIA display menu.

 If you need help in accessing the NVIDIA display menu, see “Accessing the NVIDIA Display Control Panel Pages” on page 52.

 Figure 8.15 and Figure 8.16 show Full Screen Video settings pages.

Full-Screen Video Settings

Full Screen Device

Select the display on which you want video to be played back in full-screen mode.

Note: After selecting any of these Full Screen Device settings, you may need to exit and restart your video application for the settings to take effect.

- **Disable** (Figure 8.15) disables Video Mirror (including the Full screen video zoom controls).

- **Primary display/Secondary display** settings (Figure 8.16) are only available under nView Clone modes.

 To enable Full-Screen Device functionality in nView Clone mode, click either **Primary display** or **Secondary display** as the full screen device.

- **Auto-select** (Figure 8.16) is only available under **nView Dualview and Span modes**. Auto-select enables full-screen device functionality, which creates the full-screen mirror on the display on which there is no overlay. This implies that if the video being played is dragged to the other display, the full-screen mirror image will automatically switch displays.
Chapter 8
Configuring Key ForceWare Graphics Driver Features

Figure 8.16 Full Screen Video — Settings for nView Dualview/Span and Clone Modes

Track Overlay Rotation

Select the Track overlay rotation check box (Figure 8.17) to link the degree of rotation you specify on the NVRotate page (see “Using NVRotate Settings” on page 166) for a video overlay between the primary and secondary displays.

Adjust Colors

See “Adjusting Desktop Colors” on page 130.
Figure 8.17 Full Screen Video — Zoom Control Video Mirror Settings

Zoom controls apply to the display being used for the “video mirror” feature.

Select the Track overly rotation check box to link the degree of rotation you specified on the NVRotate page for the video overlay on the primary display to the secondary display.

Full Screen Video Zoom Controls

Zoom Control

Zoom Control lets you zoom into the rendered video. Click the list to select the display type to zoom and use the quadrant selection to select the screen region to zoom.

- **Video Mirror** (Figure 8.17) sets the zoom selection to the secondary display on which the video mirror is rendered.
- **Both** applies the zoom selection to the both the primary and the secondary display on which the video is rendered. (See “Using Video Overlay Settings” on page 153.)

Note: Video players that cannot detect the presence of Video Mirror may not update the zoom factor immediately while displaying a still frame.
Chapter 8
Configuring Key ForceWare Graphics Driver Features

Out/In

The Out/In slider lets you zoom in on or out of the selected portion of the video playback screen.

Screen Region to Zoom

Select the area of the video screen on which you would like to zoom by clicking the area. You can then zoom to that portion of the screen by moving the Out/In slider control, below.

- Out/In slider lets you zoom in on or out of the selected portion of the video playback screen.
- Restore Defaults restores all color values to the hardware factory settings.

Troubleshooting Full Screen Video Problems

- If any settings changes you make do not take effect (e.g., the controls have no effect on the video) after you click Apply, close the video overlay application and then re-open it.
- Some applications have their own overlay color control settings. If you run one of these applications and try to use the NVIDIA color settings, both the application’s color settings and the NVIDIA color settings can change the overlay attributes. This can result in an inaccurate indication of the overlay settings, or unexpected overlay settings for an overlay application. To prevent this problem, use the overlay application’s color settings.

Using the Tools Page

Accessing the Tools Page

To access the Tools page, click Tools from the NVIDIA display menu. If you need help in accessing the NVIDIA display menu, see “Accessing the NVIDIA Display Control Panel Pages” on page 52. Figure 8.18 shows the Tools page.
Adding the NVIDIA Settings Menu to the Windows Taskbar

The **Enable taskbar icon** check box is selected, by default, on the Tools page (Figure 8.18). When this option is selected, the NVIDIA Settings menu icon is added to the Windows taskbar notification areas, as shown in Figure 8.19.

You can click this icon to display and use the NVIDIA Settings menu to apply any of the NVIDIA graphics driver settings (which are normally configurable from the NVIDIA display menu) on the fly. This menu also contains options for restoring default settings and accessing the Windows Display Properties page.
You can access the following settings using the NVIDIA Settings menu icon.

- **Screen Resolution**
- **Screen Refresh Rate**
- **Color Quality**
- **nView Display Settings**
- **Performance and Quality Settings**
- **Custom Color Settings**
- **Rotation Settings**
- **Desktop Color Settings**
- **nView Desktop Manager**

Figure 8.20 and Figure 8.21 show sample NVIDIA Settings menus.

Figure 8.20 NVIDIA Settings Sample Menus with Four Connected Graphics Cards

NVIDIA Settings menu showing four graphics cards are connected. You can select each to access and configure its display settings.
Figure 8.21 NVIDIA Settings Menus — Another Example

Display Optimization Wizard

Run the Display Optimization Wizard to adjust your displays for optimal viewing and representation of colors.
Chapter 8
Configuring Key ForceWare Graphics Driver Features

Note: Displays in nView Clone mode cannot be optimized. If you would like to optimize these displays, change the display mode to another nView mode and then restart the wizard.

Adding NVIDIA Menu Options to the Windows Desktop Menu

When the Enable desktop context menu check box is selected (the default condition) (Figure 8.22), your connected displays appear as choices on your Windows desktop menu.

1 To access the desktop menu, right click on your desktop.

2 Select NVIDIA Display and one of your connected displays from the list that appears (Figure 8.22).
 You can select any of these displays to directly access the NVIDIA display properties control panel.

3 To remove the NVIDIA Display choices from your desktop menu, clear the check box and click Apply (Figure 8.22).

Forcing Detection of Connected Television

Selecting the Force TV detection check box can be useful in situations where the particular television model that is connected to your graphics card does not properly load the signals that allow the graphics card to detect its presence. As a result, you are not able to see the television as a display on the nView Display Settings page.

1 Select the Force TV detection check box and click Apply.

2 Restart your computer when prompted.

Once you log back in, you can view your connected television as a display on the nView Display Settings page, access the various TV formats, and configure the TV adjustment options. For details, see “Adjusting Television (TV) Settings” on page 97.

Detecting Displays

Click Detect Displays to detect all displays connected to your graphics card. Use this feature if you have plugged in any displays after opening the NVIDIA display control panel.
Figure 8.22 Tools Settings

Selecting the Enable desktop context menu check box adds the NVIDIA display menu item to your desktop context menu.

Clearing the Enable desktop context menu check box removes the NVIDIA display menu option, but retains the nView Desktop Manager menu items if you chose to display them using options on the nView Desktop Manager control panel, as shown in the desktop menu below.
Using NVRotate Settings

The NVRotate settings (Figure 8.23) let you view your Windows desktop in **Landscape** or **Portrait** mode. You can rotate your desktop by 90, 180, or 270 degrees.

Note: NVRotate is supported on GeForce2 MX and later series of NVIDIA GPUs.

Note: If you are using the Video Mirror feature, you can also use the NVRotate feature to rotate the overlay video. If you want to apply the specified rotation to both the primary and secondary displays, use the **Track overlay rotate** setting on the **Full Screen Video** page. For details, see “Using Full Screen Video Settings” on page 155.

Accessing the NVRotate Page

To access the NVRotate page, click **NVRotate** from the NVIDIA display menu.

Figure 8.23 through Figure 8.25 show the NVRotate settings.
Before You Use NVRotate Settings

- Rotation requires an additional video buffer equal to the settings for the rotated device. For systems with limited video memory, this can restrict the modes for which rotation can be supported.
- In nView Clone mode, both displays are rotated.
- In Dualview mode, either of the displays can be rotated provided there is enough memory to perform the rotation operation.
- Only 3D games and applications that include support for rotation will work in rotated modes.
- Because rotated modes consume additional system and graphics resources, you might experience slower video performance and poorer graphics quality under the following conditions:
 - You are using slower GPUs, such as those in the NVIDIA GeForce2 or older series.
 - Other demands are placed on the NVIDIA graphics driver, such as moving the application window across the desktop.

Enabling NVRotate Settings

The following desktop rotations options are available:

- **Landscape** is the “default” mode (Figure 8.23).
- **Inverted Landscape** results in a 270 degree rotation (Figure 8.24).
- **Portrait** results in a 90 degree rotation (Figure 8.25).
- **Inverted Portrait** results in a 180 degree rotation (Figure 8.25).
- **Restore Default** results in the default “Landscape” mode (Figure 8.23).

1 As shown in Figure 8.24, to perform the desktop rotation, you can click one of the three arrow buttons on the NVRotate page or you can click the semi-circular arrow on the top right of the screen image and drag it in the direction of the rotation.

2 Click **OK** after selecting an option for the rotation change to take effect.
To rotate your desktop, click one of these arrow buttons.

or

Select one of these options.
Adjusting Temperature Settings

Note: The Temperature Settings page is available with GeForce FX and newer NVIDIA GPUs and on certain older NVIDIA GPUs only if the option has been enabled on your computer.

Temperature settings let you adjust the temperature of the selected NVIDIA GPU on your computer.

Accessing the Temperature Settings Page

To access the Temperature Settings page, click Temperature Settings from the NVIDIA display menu.

Figure 8.26 Temperature Settings
Chapter 8
Configuring Key ForceWare Graphics Driver Features

Temperature Settings

Temperature Level (GPU Core Temperature)

Displays the current temperature of the selected NVIDIA GPU in your system.

Core Slowdown Threshold

Enter the value at which you want the NVIDIA GPU to slow itself down to prevent overheating.

When this value matches the **GPU core temperature** value, a dialog box automatically appears warning of the condition and the actions that have been taken to prevent possible overheating and damage to any particular GPU(s) in your system.

Note: The recommended value for this setting is the default that is preset. Any changes to this value should be made with extreme caution.

Ambient Temperature

Ambient temperature is the current temperature of the area surrounding the selected NVIDIA GPU in your system. This temperature varies greatly, depending on other heat sources located near the GPU.

Enable Heat Indicator Warning When Threshold Exceeded

When the value of the NVIDIA **GPU core temperature** matches the **Core slowdown threshold** value, the Heat Indicator dialog box automatically appears describing the situation and the actions that have been taken to prevent possible damage to any particular GPU(s) in your system.
Chapter 8
Configuring Key ForceWare Graphics Driver Features

Changing Screen Resolutions and Refresh Rates

The Screen Resolution & Refresh Rates page (Figure 8.27) lets you configure screen resolution, color quality, and screen refresh rates for each of your connected displays.

To access the Screen Resolutions & Refresh Rates page, click **Screen Resolutions & Refresh Rates** from the NVIDIA display menu. If you need help in accessing the NVIDIA display menu, see “Accessing the NVIDIA Display Control Panel Pages” on page 52.

Figure 8.27 Screen Resolution & Refresh Rates Page

Screen Resolution and Color Quality

- **Screen Resolution** lets you display available screen resolution settings for the display. Move the slider to select a different screen resolution.
- **Color quality** lets you display available color settings for the currently selected screen resolution of the display. Use the slider to select a different color setting.
Monitor Settings

- **Screen refresh rate** displays available refresh rates for the currently selected screen resolution of the display. Click the list to select a different refresh rate.

- **Show only physical panning resolutions.** Check this box to allow modes smaller than traditional Windows desktop modes to be set on the selected display. This can cause the visible area of the display to possibly appear zoomed or to pan around the desktop, depending on the capabilities of the display.

- **Hide modes that this monitor cannot support** specifies whether to include modes that are not supported by your display.

 CAUTION: Choosing a mode that is inappropriate for your display may cause severe display problems and could damage your hardware.

Adding Custom Screen Resolutions & Refresh Rates

1. Click **Add** to display the dialog box shown in Figure 8.28.

 Figure 8.28 Add Custom Resolution Dialog Box.

2. Enter the pixel settings for the resolution you want to add in the **Width** and **Height** fields.

3. Click **Add**.

4. When the confirmation message appears, click **OK**.

5. Click **OK** to return to the Screen Resolution & Refresh Rates page.
To enable these custom resolutions, see the next section “Enabling Custom Screen Resolutions” on page 173.

Enabling Custom Screen Resolutions

After you have added one or more custom screen resolutions, follow these steps to enable these resolutions.

1 Select the Only show custom modes check box to access those screen resolutions & refresh rates that you have added using the Add button.
 Note: Custom resolutions that you can select are limited to resolutions divisible by the number “8”.

2 Click Apply.

3 Move the Screen resolution slider to a custom resolution you added.

4 Click Apply.
 The screen may go blank for a few seconds for the new setting to take effect.

Removing Custom Screen Resolutions & Refresh Rates

1 Once you have added one or more custom screen resolutions and refresh rates, follow the remaining steps to delete any of them:

2 From the Screen Resolution & Refresh Rates page, make sure the Only show custom modes check box is selected.

3 Move the Screen resolution slider to a custom resolution that you want to delete.

4 Click the Remove button to delete that resolution.

5 Repeat steps 3 and 4 for additional resolutions you want to remove.

Accessing Standard HDTV Formats

Note: The Show standard HDTV formats check box (Figure 8.29) appears only if you have an HDTV connected to your graphics card with a DVI connector.

For detailed descriptions about using the options, see “Enabling HDTV-Over-DVI — Only for HDTVs Connected with DVI Cable” on page 118.
Chapter 8
Configuring Key ForceWare Graphics Driver Features

Figure 8.29 Screen Resolution & Refresh Rates Page — HDTV Connected

This option appears only when you have an HDTV connected with a DVI connector.

Advanced Timing

Note: The Advanced Timing button is not available for certain NVIDIA GPU-based graphics cards with a DVI connector in use. DVI timing adjustment is supported for NV3x-based graphics cards only if they have an external TMDS, such as the SiliconImage 164. If the graphics card uses the internal TMDS, then the Advanced Timing button is not available. However, graphics cards that use the internal TMDS can support refresh rates below 60 Hz using the current NVIDIA Release 60 driver.

Note: To use the Advanced Timing page, you must be an advanced user and familiar with the concepts of display timing standards and parameters. For additional details, refer to the following documents that explain display timing standards:

>> VESA and Industry Standards and Guidelines for Computer Display Monitor Timing (DMT) published by the Video Electronics Standards Association (VESA)

>> Coordinated Video Timing Standard published by VESA

>> EIA Standard: A DTV Profile for Uncompressed High Speed Digital Interfaces published by the Electronic Industries Alliance
1 Click the **Advanced Timing** button to open the Advanced Timing configuration page (Figure 8.30) where you can select display timing standards and custom parameters.

2 If an Agreement page appears, scroll down and then click the **I Agree** button to accept the agreement and open the Advanced Timing page.

Figure 8.30 Advanced Timing — Custom Modes/Timings & Timing Standards

Display Mode & Timing Parameters

Click the **Mode & timing** list if you want to select one of the custom mode and timing parameters. These settings are explained below.

- Other parameters such as **861B (1920 x 1080 @ 59.94) -I** and **861B (1920 x 1080 @ 59.94) -P**

861B refers to an EIA/CEA standard and would apply to certain 861 High Definition television (HDTV) displays.

NVIDIA Corporation

175
Chapter 8
Configuring Key ForceWare Graphics Driver Features

-P means “progressive scanning,” which is a method of sending an image to your display where all the scan lines are updated in each frame --- in other words, all of the scan lines are displayed sequentially. This method, used in modern computer displays, generally reduces flicker in the displayed image and results in smoother motion for videos.

-I means “interlaced scanning,” which is another method of sending the image to your display where even scan lines are drawn during the first field in a frame and odd scan lines are drawn during the second field in the frame. Another way to explain this method is that two passes are used to paint an image on the screen. On the first pass, every other line is painted and on the second pass, the rest of the lines are painted.

Unlike the “progressive scanning” method, where all the scan lines are updated in each frame, interlaced scanning results in a higher frame rate but usually causes image flicker.

- Custom values. If you are an advanced user and would prefer to enter custom timing values in the fields provided on this page, follow these steps:

1. Select Custom values from the Timings list and click Apply.
2. Enter the values you want in the various fields provided and then click Apply.
3. When the confirmation prompt appears, click Yes. Your custom settings are now in effect.
4. To remove the custom settings you selected, click Remove. To remove the custom settings you selected, click Remove.

 Note: The driver may place black borders around the displayed image, as needed.

Display Timing Standards

Click the Timing standard list and select one of the display timing standards (such as DMT, GTF, CVT, and EDID) as explained below.

- General Timing Formula (GTF) is an older but widely used timing standard. However, newer display are switching to the CVT standard.

- Discrete Monitor Timings (DMT) timing is a set of pre-defined VESA timings. VESA updates this standard every year. If DMT timing is available for a specific mode, the NVIDIA display driver normally selects it instead of GTF.

- Coordinated Video Timings (CVT) became the VESA standard on March 2003. CVT supports higher resolutions better than other timing standards.
Chapter 8
Configuring Key ForceWare Graphics Driver Features

- **Coordinated Video Timings-Reduced Blanking (CVT-RB)** improves on the CVT standard. CVT-RB offers reduced horizontal and vertical blanking periods and allows a lower pixel clock rate and higher frame rates.

- **EDID Timing** is the preferred timing standard defined by the display’s EDED value. EDID is a standard data structure that defines the display’s model number, timing, and other settings.

 Note: Manufacturer-defined EDIDs are available only on Plug-and-Play (PnP)-compatible displays.

 Note: The NVIDIA driver may place black borders around the displayed image, as needed.

Horizontal Pixels

The **Horizontal pixel** group box contains horizontal advanced timing settings.

- **Sync width.** Click the list to specify the width of the horizontal blanking period during which the synchronization pulse triggers horizontal re-scanning.

- **Front porch.** Click the up or down arrow to specify the horizontal blanking period that occurs between the end of the active period and the beginning of the synchronization pulse.

- **Back porch.** Click the up or down arrow to specify the blanking period that occurs between the end of the synchronization pulse and the next active period.

- **Horizontal sync polarity.** Click the up or down arrow to specify the direction of rapid, transient change in the amplitude of a signal from the baseline during the horizontal synchronization pulse.

 If the horizontal synchronization polarity is positive (+), the value of the horizontal synchronization pulse is higher than the baseline value.

 If the horizontal synchronization polarity is negative (‐), the value of the horizontal synchronization pulse is lower than the baseline value.

 Note: You can select the horizontal synchronization polarity independently of the vertical synchronization polarity.

- **Scan rate** indicates the measure of how many scan lines a monitor can display in one second, expressed in kHz (generally somewhere between 20 and 180 kHz).

 Note: In the case of an analog display (CRT) it is limited by the speed at which the display can move the electron beam horizontally across the screen and then return it to the beginning of the next line.

 Note: This value should not exceed the display’s maximum horizontal scan frequency.
• **Active pixels** indicates the number of all visible pixels in one horizontal line.

Vertical Lines

The **Vertical lines** group box contains vertical advanced timing settings.

• **Sync width.** Click the up or down arrow to specify the blanking period during which the synchronization pulse is active.

• **Front porch.** Click the up or down arrow to specify the vertical blanking period that occurs between the end of the active period and the beginning of the synchronization pulse.

• **Back porch.** Click the up or down arrow to specify the blanking period that occurs between the end of the synchronization pulse and the next active period.

• **Vertical sync polarity.** Click the up or down arrow to specify the direction of rapid, transient change in the amplitude of a signal from a baseline during the vertical synchronization pulse.

 If the vertical synchronization polarity value is positive (+), the value of the vertical synchronization pulse is higher than the baseline value.

 If the vertical synchronization polarity value is negative (-), the value of the vertical synchronization pulse is lower than the baseline value.

 Note: You can select the vertical synchronization polarity independently of the horizontal synchronization polarity.

• **Refresh rate** indicates how many times per second the electron beam in the picture tube is moved from top to bottom in the case of a CRT (analog display), or more generally, the frequency at which the entire screen is refreshed. Specify the frequency at which your entire screen is refreshed, or retraced, to prevent the image from flickering.

 Note: This frequency is limited by the display’s maximum horizontal scan rate and the current resolution, as higher resolution implies more scan lines.

 Note: The value should not exceed the display’s maximum vertical scanning frequency.

• **Active pixels** indicates the number of all visible pixels in one vertical line.

Interlaced Mode

Interlaced mode refers to interlaced scanning, which is a method of sending the image to your display where even scan lines are drawn during the first field in a frame and odd scan lines are drawn during the second field in the frame.

 Note: Also see the explanation for -I (interlaced scanning) on page 176.
Unlike the progressive scanning method, where all the scan lines are updated in each frame, interlaced scanning results in a higher frame rate but usually causes image flicker.

Pixel Clock

Pixel clock indicates how many millions of pixels are output per second. In other words, this is the frequency at which the display receives pixels from the graphics card. The value typically lies within a range 10 to 360 MHz, or the DAC maximum value.

Editing the NVIDIA Display Menu

Use the **Menu Editing** page to remove infrequently used NVIDIA menu items, which you can restore later.

Accessing the Menu Editing Page

To access the Menu Editing page, click **Menu Editing** from the NVIDIA display menu (Figure 8.31).

If you need help in accessing the NVIDIA display menu, see “Accessing the NVIDIA Display Control Panel Pages” on page 52.

Using Menu Editing

1. Select the **Enable menu editing** check box (Figure 8.32).

2. Remove infrequently used screens by dragging them from the NVIDIA display menu to the list box shown below the check box.

 Figure 8.32 shows the **Refresh Rate Overrides** and **Temperature Settings** pages temporarily removed from the NVIDIA display menu.

3. To return to normal NVIDIA menu navigation, clear the **Enable menu editing** check box (Figure 8.32).
Chapter 8
Configuring Key ForceWare Graphics Driver Features

Figure 8.31 Menu Editing Page — Default Settings

4 To restore the menu options back to the NVIDIA display menu, you can simply click Restore Defaults or if you want to remove each item manually, follow these steps:

a Select the Enable menu editing check box to insert the check mark.

b Drag the menu items that you want to restore back to the menu.

5 To return to normal NVIDIA menu navigation, clear the Enable menu editing check box (Figure 8.33).
These menu items have been temporarily removed from the NVIDIA display menu.

Clear the **Enable menu editing** check box after removing menu items in order to navigate normally within the NVIDIA display menu.
Chapter 8
Configuring Key ForceWare Graphics Driver Features

Adjusting PowerMizer Settings — Only for Notebook Computers

When using a mobile (notebook or laptop) computer, the NVIDIA PowerMizer™ page lets you regulate the power consumption of your NVIDIA GPU.

Accessing the PowerMizer Page

To access the PowerMizer page, click PowerMizer from the NVIDIA display menu.

If you need help accessing the NVIDIA display menu, see “Accessing the NVIDIA Display Control Panel Pages” on page 52.

Figure 8.33 shows the PowerMizer page.

PowerMizer Settings

Current Battery Charge

This is the current battery charge being used by your mobile computer.

Current Power Source

Current power source can be either AC Outlet or Battery. In this example (Figure 8.33) it is AC Outlet.
Current Power Level

The current power level can apply to either **AC outlet** or **Battery** power source, depending on the power source being used by your computer.

- **AC Outlet**. Adjust the power consumption from the AC power source relative to performance by setting one of the following:
 - **Maximum power savings**
 - **Maximum performance**
 - **Balanced**
- **Battery**. You can choose any one of the following options:
 - Conserve battery life by setting **Maximum Power Savings**, but at some decrease in performance.
 - Use the full graphics performance of your NVIDIA GPU by selecting **Maximum Performance**.
 - Choose a compromise between the two settings by using **Balanced**.
Appendix A
Using Two NVIDIA GPU-Based Graphics Cards

Using Two NVIDIA GPU-Based Graphics Cards

This appendix contains the following major topics:

- “Before You Begin” on page 185
- “GeForce FX 5900 Ultra — Installing the NVIDIA ForceWare Graphics Display Driver” on page 186
- “GeForce FX 5900 Ultra — Attaching the Secondary Display for nView Dualview Mode” on page 187
- “GeForce4 MX — Installing the NVIDIA ForceWare Graphics Display Driver” on page 190
- “Attaching Displays for GeForce4 MX — nView Dualview Mode” on page 191
- “Enabling nView Span and Clone Modes — Detaching the Secondary Display” on page 193
- “Viewing Multiple NVIDIA GPU-based Graphics Cards from the NVIDIA Display Menu” on page 194
- “Viewing Multiple Card Configurations Using the NVIDIA Settings Menu Icon” on page 197
Appendix A
Using Two NVIDIA GPU-Based Graphics Cards

Before You Begin

This appendix discusses an example of using two *multi-display* NVIDIA GPU-based graphics cards in one computer running Windows XP.

Note: When running Windows with multiple cards (i.e., two or more NVIDIA GPU-based graphics card are installed in your computer), the same NVIDIA driver (version) must be installed for each card.

Before Installing the NVIDIA ForceWare Graphics Display Driver

1. Make sure you have an AGP slot and a PCI slot on your computer.
2. Install the appropriate NVIDIA GPU-based PCI and AGP cards.
3. Make sure the graphics cards are securely seated in their slots.
4. Connect the appropriate displays to each card, making sure that the cable connectors are *securely* attached to the graphics cards.
5. Turn on your displays.

Examples and Setup

The examples in this appendix show the following NVIDIA-based graphics cards and configurations.

- The **GeForce FX 5900 Ultra GPU-based graphics card** is an AGP graphics card supporting multi-display nView functionality.
- The **GeForce4 MX GPU-based graphics card** is a PCI graphics card supporting nView multi-display functionality.

Note: Depending on the number of PCI slots in your computer, you can install more than one PCI graphics cards. These examples use only one PCI graphics card.
GeForce FX 5900 Ultra — Installing the NVIDIA ForceWare Graphics Display Driver

1 Start up your computer.
 Your desktop will appear on one of the displays attached to one of your graphics cards. The Found New Hardware Wizard appears.

2 Click the last option labeled **Install from a list or specific location (Advanced)** to select it.

3 Click Next.

4 Click the last option labeled **Don’t search. I will choose...** to enable it and click Next.

5 From the Common hardware types: list, double-click the **Display adapters** choice.

6 On the next window that appears, make sure that none of the choices is highlighted. If one is, click it to remove the highlight.

7 Click **Have Disk**.

8 Click **Browse** and locate the path containing NVIDIA ForceWare graphics display driver you want to install.

9 Click the NVIDIA .inf file and then click **Open**.

10 Click **OK** on the Install From Disk window.

11 Then click the name of your NVIDIA GPU-based graphics card that appears on the Model list and click **Next**.

12 Copying files will take a couple of minutes while you wait.

13 Click all prompts to continue the process.

14 Click **Finish** when that option appears

15 If there is a prompt to restart your computer, click to do so.

16 Respond to the prompts to restart your computer.
GeForce FX 5900 Ultra — Attaching the Secondary Display for nView Dualview Mode

1 From your desktop, open the Display Properties Settings page.

Three display screen images appear, one of which is active (attached) while the other two are not active, meaning connected but not attached.

In this example (Figure A.1), display numbered 1 appears active, connected, and attached to the GeForce FX 5900 Ultra graphics card. Display 2 (connected to the GeForce MX) and display 3 (connected to the GeForce FX 5900 Ultra graphics card) are not active (appear as grayed screen images) because they have not yet been attached.

2 Click Identify to identify the display.

3 Notice that the display’s number, as represented on the Settings page, appears briefly on that display’s desktop (Figure A.2).

Figure A.1 Display Properties Settings — 3 Displays with 1 Attached
4 From the Settings page, right click the inactive screen image numbered display 3 (connected to the GFX 5900 Ultra card), click **Attached**, and click **Apply**.

Figure A.3 show that display 3 is now enabled and attached.

5 Click **Identify** to identify the attached displays (1 and 3) on their desktops. Notice that the attached displays’ numbers, as represented on the Settings page, appear briefly on those displays’ desktops (Figure A.4).
Figure A.3 Display Properties Settings — 3 Displays with 2 Attached

Figure A.4 Two Displays With Identifying Numbers
Appendix A
Using Two NVIDIA GPU-Based Graphics Cards

GeForce4 MX — Installing the NVIDIA ForceWare Graphics Display Driver

1 From the Windows Display Properties Settings page, right click the display image 2 (connected to the GeForce4 MX-based graphics card) and click Properties.

2 Click the Adapter tab and click Properties.

3 Click the Driver tab and then click Update Driver to display the Hardware Update Wizard.

4 Click the last option labeled Install from a list or specific location (Advanced) to select it.

5 Click Next.

6 Click the last option labeled Don't search. I will choose... to enable it and click Next.

7 Enable the check box labeled Show compatible hardware, if it is not checked already.

8 On the Model list, if it appears, click the NVIDIA-based graphics card for which you are about to install the NVIDIA driver. In this example, it is GeForce4 MX.

9 Click Have Disk.

10 Click Browse and locate the path containing NVIDIA ForceWare graphics display driver you want to install.

11 Click the NVIDIA .inf file and then click Open

12 Click OK on the Install from Disk window.

13 Click the name of your NVIDIA GPU-based graphics card (in this example, GeForce4 MX).

14 Click Next.

15 Click all prompts to continue the process...

16 Copying files will take a couple of minutes while you wait.
17 Click **Finish** when that option appears and then click **Close** to close the Driver window.

18 Respond to the prompts to restart your computer.

Attaching Displays for GeForce4 MX — nView Dualview Mode

1 When you have returned to your desktop, right click on the desktop to display the desktop menu and click **Properties** and the **Settings** tab.

Notice that all four of the connected displays are now represented by numbered display images, as shown in Figure A.5.

Figure A.5 Display Properties Settings — 4 Attached Displays

Remember that we already attached displays 1 and 3 for the GeForce FX 5900 Ultra-based graphics card. Now we will enable displays 2 and 4 for the GeForce4 MX-based graphics card.
Appendix A
Using Two NVIDIA GPU-Based Graphics Cards

2 Right click display image 2, click Attached and click Apply. The associated display becomes enabled and displays a desktop.

3 Right click on display image 4, click Attached and click Apply. The associated display becomes enabled and displays a desktop.

Figure A.5 and Figure A.6 show the associated Display Properties Settings page and the resulting desktops on the numbered displays.

Figure A.6 Four Displays With Identifying Numbers

Note: Attaching all the displays implies that nView Dualview mode is enabled. If you check the nView Display Settings page for either of the NVIDIA-based graphics cards that are installed, you will see that nView Dualview mode is enabled.

1 From the Windows Display Properties Settings page, right click any of the four display images.

2 Click Properties and then click the NVIDIA GPU ab to open the associated page.

3 Click the nView Display Settings menu option. Notice that the nView Modes list is set to Dualview.
Enabling nView Span and Clone Modes — Detaching the Secondary Display

Note: In the following steps, we’ll switch from Dualview to Span or Clone mode for each of the two NVIDIA GPU-based graphics cards. You will notice that the secondary displays become detached (disabled) because nView Span and Clone modes do not detect the secondary display as separate displays.

1. Right click on either display image 2 or 4, representing the GeForce4 MX-based graphics card.

2. Click Properties and then click the NVIDIA GPU-labeled tab to open the associated NVIDIA GPU (GeForce4 MX) page.

3. Click the nView Display Settings menu option.

4. Click the nView Modes list and select Horizontal Span, then click Apply.

5. Wait while the displays adjust modes. The resulting Windows Display Properties Settings page and desktop are shown in Figure A.7 and Figure A.8.

Figure A.7 Display Properties Settings — 4 Displays with 2 Attached
Appendix A
Using Two NVIDIA GPU-Based Graphics Cards

Figure A.8 Two Displays With Identifying Numbers

Note: You can repeat steps 4 and 5 and chose Vertical Span or Clone mode. The result will be similar to what is shown in Figure A.7 and Figure A.8 in that the secondary displays become detached because nView Span and Clone modes do not detect the secondary display as a separate display.

Viewing Multiple NVIDIA GPU-based Graphics Cards from the NVIDIA Display Menu

You can view multiple NVIDIA GPU-based graphics cards from the NVIDIA display menu and easily access the corresponding NVIDIA display control panel pages to configure advanced display settings for each graphics card. Examples are shown in Figure A.9 and Figure A.10.

Also see “Configuring Key ForceWare Graphics Driver Features” on page 129.
Figure A.9 NVIDIA Display Menu — GeForce FX 5900 Ultra and GeForce4 MX 420 Options
Figure A.10 NVIDIA Display Menu Showing Both GeForce FX 5900 Ultra and GeForce4 MX Graphics Cards

GeForce 6800 Ultra menu

GeForce4 MX menu
Viewing Multiple Card Configurations Using the NVIDIA Settings Menu Icon

You can view the multi-GPU configurations through the NVIDIA Settings menu icon on the Windows taskbar. If you don’t have the NVIDIA Settings menu icon enabled, see “Adding the NVIDIA Settings Menu to the Windows Taskbar” on page 161.

1 Right click the NVIDIA Settings menu icon on your Windows task bar. A menu of configuration options appears, as shown in Figure A.11.

Figure A.11 NVIDIA Settings Taskbar Menu Displaying NVIDIA GeForce FX 5200 Ultra-based and GeForce4 MX-based Graphics Cards
Notice that both GeForce FX 5900 Ultra and GeForce4 MX 420 GPU-based graphics cards are shown in the menu.

To see the configuration options for each GPU-based graphics card, point to the GPU names on the menu (Figure A.11) and then move the cursor to any of the options that appear on the next menu level.
HDTV-connectivity is supported by NVIDIA GPU-based graphics cards that have the proper encoding to support HDTV display. Also see Supported HDTV Connectors in the next section.

Any NVIDIA graphics card solution for HDTV ships with an appropriate video cable — examples are shown in the “Sample Video Cables...” sections.

- “Supported HDTV Connectors” on page B-199
- “Sample “Component-Based” Cables Shipped with NVIDIA HDTV-Encoded Graphics Cards” on page B-202
- “Sample “Component-Based” Cables Shipped with NVIDIA HDTV-Encoded Graphics Cards” on page B-202

Supported HDTV Connectors

HDTV output using an NVIDIA GPU-based graphics card is supported under the following types of connectors:

- Component
- HDTV over DVI
- D connector
Component

The component connector path is defined and formats restricted by the encoder on the graphics card.

- **The “Component” video connection** is the “High Definition” output of the converter. “Component” connections frequently will be labeled “Y”, “Pb” and “Pr”. While all programming (analog, digital, and “high definition”) is available on these wires, there are some disadvantages to viewing the analog and digital programming in this mode. That is discussed next.

- **The “Component” output is in the “Native Resolution” format of 1080i**. (this is important to know!) Like the Yellow “Composite” and the S-Video outputs, the “Component” output will require a Left and Right (red and white) cable connection to provide the audio signals to either the HDTV or the Home Theater system.

- **Component cables are usually a cluster of 3 cables with RCA style plugs and will be color coded Green, Blue and Red**. The HDTV jacks on the back of the converter and the HDTV display will also be color-coded and it is important that the cables are connected so that the green jack on the HDTV converter is connected to the green jack on the display, etc.

Figure B.1 Sample Component Cables.

Your NVIDIA HDTV-encoded graphics card is supplied with the “breakout pod” to which you connect the Component Y-Pb-Pr Video Cable for DVD/HDTV that came with your HDTV set.

Note: For detailed information, refer to the user documentation supplied with your HDTV set.

HDTV over DVI

HDTV over DVI (see “Enabling HDTV-Over-DVI — Only for HDTVs Connected with DVI Cable” on page 118) uses the standard digital interface to transmit uncompressed HD digital video. The formats are limited by the available EIA-861B modes from the EDID or the custom modes you may have added. So if you have an
HDTV with a DVI connection, you can use a DVI cable (sample shown in Figure B.2) below.

Figure B.2 Sample DVI Cable.

D connector

The D Connector is used mostly in Japanese market and its path is also defined by the encoder but the available formats are additionally restricted by the D1 to D4 output modes.

Note: If you are using the NVIDIA Personal Cinema kit, note that *only* cables with a “component” connection can be used with an HDTV.

Figure B.3 Sample NVIDIA Personal Cinema™ A/V Cables
Sample “Component-Based” Cables Shipped with NVIDIA HDTV-Encoded Graphics Cards

Figure B.4 Sample Video Cables

9-pin to TV-Out Pod with Component

9-pin VIVO Pod with Component

10-pin to VIVO Pod with Component

9-pin to VIVO Breakout with Component

10-pin to TV-Out Pod with Component

10-pin to VIVO Pod with D-Connector
These sections contain the wizard pages in sequence for a few different display setups.

- “NVIDIA Display Wizard — Typical Setup” on page 204
- “NVIDIA Display Setup Wizard — Custom Setup” on page 205
- “NVIDIA Display Wizard — Analog Display with HDTV/DVI” on page 207
- “NVIDIA Display Wizard — Digital Display and Television” on page 209
NVIDIA Display Wizard — Typical Setup

Figure C.1 NVIDIA Display Wizard — Typical Setup

Welcome to the NVIDIA nView Multi-Display Setup Wizard

This wizard will help you enable multi-display setup. To continue, click Next.

Setup Type
Choose the setup type that best suits your needs.

- Typical setup (recommended)
 Configures your multiple display environment quickly using the most common customizing your multiple display environment.

- Custom setup

Preview
Preview your display settings.

Click the Preview button to get a 15-second preview of the selected settings.

If changes are needed, click Back until you get to the setting you want to change. If you are happy with the preview, click Next.

Completing the nView Multi-Display Setup Wizard

When you click Finish, your new multi-display settings will be applied.

ViewSonic GV515
- Resolution: 1280 x 1024 pixels
- Color quality: Highest (32 bit)

Display 2 (DFP)
- Resolution: 1280 x 1024 pixels
- Color quality: Highest (32 bit)
NVIDIA Display Setup Wizard — Custom Setup

Figure C.2 NVIDIA Display Setup Wizard — Custom Setup Pages (1)

NVIDIA Multi-Display Setup Wizard

Setup Type
Choose the setup type that best suits your needs:

Choose whether to use typical or custom settings:

- Typical setup (recommended)
 Configures your multiple display environment quickly using the recommended settings.

- Custom setup
 Gives you more control in customizing your multiple display environment.

NVIDIA Multi-Display Setup Wizard

Primary Display
Select your primary display.

Select the display where the Windows logon screen, system messages, some applications, and in most cases where the Windows Start button will be viewed.

Primary display:

- ViewSonic GS815
- Display 2 (DPP)

ViewSonic GS815

ViewSonic VPD150
Figure C.3 NVIDIA Display Setup Wizard — Custom Setup Pages (2)

NVIDIA Multi-Display Setup Wizard

NVIDIA nView Display Mode
Select the display mode you wish to use.

- Dualview
- Span
- Globe

NVIDIA Multi-Display Setup Wizard

Display Appearance
Adjust your displays to look how you want them to.

Use the controls below to adjust the appearance of your computer display:

ViewSonic GS915
- Screen resolution: 1280 x 1024 pixels
- Color quality: 32 bit

Display 2 (DFP)
- Screen resolution: 1024 x 768 pixels
- Color quality: 32 bit

Completing the nView Multi-Display Setup Wizard

When you click Finish, your new multi-display settings will be applied.

ViewSonic GS915
- Resolution: 1280 x 1024 pixels
- Color quality: Highest (32 bit)

Display 2 (DFP)
- Resolution: 1024 x 768 pixels
- Color quality: Highest (32 bit)

Multidisplay mode
- Dualview

To close this wizard, click Finish.
Appendix C
NVIDIA Setup Wizard Pages

NVIDIA Display Wizard — Analog Display with HDTV/DVI

Figure C.4 NVIDIA Display Wizard—Analog Display with HDTV/DVI

Welcome to the NVIDIA Display Setup Wizard

The wizard will help you enable and configure multiple displays. To continue, click Next.

NVIDIA Display Setup Wizard

Terms & Conditions of Use

Review the terms and conditions.

To continue with high-definition configuration, you must accept these terms of use.

TERMS AND CONDITIONS

WARNING: THE SOFTWARE UPGRADE YOU ARE ABOUT TO ENABLE ("UTILITY") MAY CAUSE SYSTEM DAMAGE AND VOID WARRANTIES, THE USE OF THIS UTILITY RUNS YOUR COMPUTER SYSTEM OUT OF THE MANUFACTURER'S SPECIFICATIONS, INCLUDING, BUT NOT LIMITED TO VOLTAGES, ABOVE NORMAL TEMPERATURE AND CHANGES TO BIOS THAT MAY RESULT IN UNSTABLE OPERATION. PROCEED AT YOUR OWN RISK.

Yes, I accept these terms.

No, I do not accept these terms.

NVIDIA Display Setup Wizard

Definition Format

Select the definition format for your television.

Which definition type would you like to use for your television?

- 480i (Standard)
- 480p (Enhanced)
- 576i (Standard)
- 576p (Enhanced)
- 720p (High)
- 1080i (High)

If you do not know which definition type your television supports, refer to your television's owner's manual.
Figure C.5 NVIDIA Display Wizard—Analog Display with HDTV/DVI Pages (2)
NVIDIA Display Wizard — Digital Display and Television

Figure C.6 NVIDIA Display Wizard — Digital Display with TV Pages (1)
Appendix C
NVIDIA Setup Wizard Pages

Figure C.7 NVIDIA Display Wizard — Various Types of TV Connectors

NVIDIA Display Setup Wizard

Connector Type
The wizard needs to know how your television is connected to your computer.

Select the type of connector you are using to connect your TV to your computer:
- Auto-select
- S-Video
- Composite
- DVI

NVIDIA Display Setup Wizard

Connector Type
The wizard needs to know how your television is connected to your computer.

Select the type of connector you are using to connect your TV to your computer:
- Auto-select
- S-Video

NVIDIA Display Setup Wizard

Connector Type
The wizard needs to know how your television is connected to your computer.

Select the type of connector you are using to connect your TV to your computer:
- Auto-select
- S-Video
- Composite
- DVI
Figure C.8 NVIDIA Display Wizard — Digital Display with TV Pages (2)

Display Appearance
Adjust your display to look how you want them to.

Use the controls below to adjust the appearance of your computer displays:

- Screen resolution:
 - 1280 x 1024 pixels

- Color quality:
 - 32 bit

Preview
Preview your display settings.

Click the Preview button to get a 15-second preview of the selected settings.

If changes are needed, click Back until you get to the setting you want to change.
If you are happy with the preview, click Next.

Completing the nView Multi-Display Setup Wizard

When you click Finish, your new multi-display settings will be applied.

ViewSonic VPC150
- Resolution: 1024 x 768 pixels
- Color quality: Highest (32 bit)

TV
- Connector type: Auto-select
- Signal type: M/NTSC

Multi-display mode
- Clone

To close this wizard, click Finish.
analog display — Analog display refers to your CRT display, in general. The terms CRT and analog display may be used interchangeably in this guide.

Control Panel (Microsoft Windows) — You can access the Windows Control Panel window by clicking Start > Settings > Control Panel from the Windows desktop taskbar.

control panel (NVIDIA display) — The NVIDIA display properties “control panel” (shown in Chapter 4, Figure 4.9 and throughout this guide) refers to the entire NVIDIA-based window with the fly-out NVIDIA display menu containing menu options, each of which opens to a separate configuration page.

control panel (nView Desktop Manager) — The nView Desktop Manager “control panel” refers to the entire nView Desktop Manager control panel window (tabbed style or NVIDIA menu style) from which you can configure nView Desktop Manager settings. For details, refer to the nView Desktop Manager User’s Guide — Release 70 Driver Version

nView Desktop Manager is also a clickable icon in the Windows Control Panel group of icons. When you click this icon, the nView Desktop Manager “control panel” appears.

digital display — A digital display can be a digital flat panel (DFP) or, for example, a mobile (laptop or notebook) computer’s LVDS internal display panel.

desktop — Desktop is your Windows on-screen work area on which windows, icons, menus, and dialog boxes appear.
dialog box — Dialog boxes are user-input windows that contain command button and various options through which you can carry out a particular command or task.

For example, in a Windows application “Save As” dialog box, you must indicate the folder to contain the document to be saved and the name of that document when saving it.

dual-card configuration — A setup where two or more displays (such as an analog display, a digital display, or a TV) are connected to two NVIDIA GPU-based graphics cards installed in the computer.

GPU — NVIDIA graphics processor (chip) products are called graphics processing units (GPU). Supported NVIDIA GPUs are listed in “Hardware — Supported NVIDIA Products” on page 21. The graphics card you are using is based on an NVIDIA GPU.

HDTV — high definition television. A system for transmitting a TV signal with far greater resolution than the standard National Television Committee (NTSC) standards. An HDTV set requires at least two million pixels versus a common television set of 360,000.

multi-graphics card configuration — A setup where two or more displays (such as an analog display, a digital display, or a TV) are connected to two (or more) NVIDIA GPU-based graphics cards installed in the computer.

multi-display configuration — A setup where two or more displays are connected to either a multi-display NVIDIA GPU-based graphics card; or two (or more) NVIDIA GPU-based graphics cards.

single-display configuration — A setup where only one display is connected to the NVIDIA GPU-based graphics card in your computer.

SLI (Scalable Link Interface) technology — NVIDIA SLI multi-GPU technology takes advantage of the increased bandwidth of the PCI Express™ bus architecture to allow multiple GPUs to work together to deliver accelerated performance.

An NVIDIA SLI system consists of a PCI Express motherboard that supports two physical connectors capable of having two NVIDIA PCI Express graphics cards plugged into them. The two graphics cards must be joined together by the NVIDIA SLI connector.

With the appropriate graphics drivers installed, SLI mode can then be enabled or disabled. When SLI mode is disabled, you can use all the nView multi-display modes.
that are supported, including using up to four monitors connected to the two SLI graphics cards. When SLI mode is enabled, nView multi-display modes are not available. Instead, the two graphics cards drive a single display1 to provide accelerated 3D performance in DirectX and OpenGL applications2.

Note: For details, see the Application Note “Using NVIDIA SLI Graphics Cards”.

window — A window is any independent window on your desktop. Applications such as Microsoft® Windows® Outlook® or Explorer may have several windows which are all part of the same application. Windows can be dragged around the screen, opened and closed, and resized.

The nView Desktop Manager application (described in the *NVIDIA nView Desktop Manager User’s Guide*) allows you to do even more with windows such as make them transparent or force them always to be on top of other windows.